ComponentOne OLAP

What is C10lap

C1Olap is a suite of .NET controls that provide analytical processing features similar to those found j

Microsoft Excel’s Pivot Tables and Pivot Charts.

C10lap takes raw data in any format and provides an easy-to-use interface so users can quij
intuitively create summaries that display the data in different ways, uncovering trends
valuable insights interactively. As the user modifies the way in which he wants to see
instantly provides grids, charts, and reports that can be saved, exported, or printed.

Introduction to Olap
Olap means “online analytical processing”. It refers to technologies that enS ke ic
visualization and analysis of data.

Typical Olap tools include “Olap cubes”, and pivot tables such as
These tools take large sets of data and summarize it by grouping rec
example, an Olap cube might summarize sales data gro produ®, region, and period. In this

case, each grid cell would display the total salegfor a p pr@duct, in a particular region, and for a

specific period. This cell would normally represe se | records in the original data source.

dynamically (on-line), making it easy to
pnpatterns.

Date Product

Oct 2007 Product Agil} ‘

Oct 2007 Productflf | 15

Oct 2007 ‘ 4

Oct 2007 3

Nov 20 6
North 8
North 10
North 3

Now suppose you were asked to analyze this data and answer questions such as:

e Are sales going up or down?
e Which products are most important to the company?
e Which products are most popular in each region?

In order to answer these simple questions, you would have to summarize the data to obtain tables such

as these:

Sales by Date and by Product

Date Product A Product B Product C Total
Oct 2007 15 15 4 34
Nov 2007 16 3 8 27
Total 31 18 12 61
Sales by Product and by Region

Product North South Total

Product A 22 9 31

Product B 18 18

Product C 8 4 12

Total 48 13 61

Each cell in the summary tables represents several records in the original data

more values fields are summarized (sum of sales in this case) a tegorized based on the values of

other fields (date, product, or region in this case).

This can be done easily in a spreadsheet, but the work i
wrote a custom application to summarize the

maintaining it to add new views, and users wou
implemented.

OLAP tools allow users to define the vie
defined views or create and save ne
automatically in the views, and u

own implementation.

ta, yo

The diagram below shows how the C10lapPage is organized:

here one or

C10lapPanel
The C10lapPanel control is the core of the C10lap product. It has a property that takes raw
data as input, and an OlapTable property that provides ¢ X views arizing the data according

OlapEngine object that that is responsible for

eria selected by the user. These criteria are represented by
onnection a specific column in the source data, filter criteria,

e user creates custom views by dragging C10OlapField objects from
Fur auxiliary lists: the RowFields, ColumnFields, ValueFields, and

At the core of the C10lapPa
summarizing the raw datj

for displayin® the OLAP data, the C10lapGrid and C10lapChart, but you could use any other control as
well.

C10lapGrid

The C10lapGrid control is used to display OLAP tables. It extends the C1FlexGrid control and provides
automatic data binding to C10lapPanel objects, grouped row and column headers, as well as custom
behaviors for resizing columns, copying data to the clipboard, and showing details for any given cell.

The C10lapGrid control extends the C1FlexGrid control, our general-purpose grid control. This mea
the whole C1FlexGrid object model is also available to C10lap users. For example, you can export
grid contents to Excel or use styles and owner-draw cells to customize the grid’s appearance.

C10lapChart
The C10lapChart control is used to display OLAP charts. It extends the C1Chart contr
automatic data binding to C10lapPanel objects, automatic tooltips, chart type and pa

The C10lapChart control extends the C1Chart control, our general-purpose
the whole C1Chart object model is also available to C10lap users. For exa
to different file formats including PNG and JPG or customize the chart styl

C10lapPrintDocument
The C10lapPrintDocument component is used to create reports
PrintDocument class and provides properties that allow you to spec and formatting for

showing OLAP grids, charts, and the raw data used to cr report.

Quickstart
This section presents code walkthroughs th e simplest C10lap application and progress to
introduce commonly used features.

An Olap application with
To create the simplest C10lap
dragging a C10lapPage contr
to fill the form, which s

by @pating a new Windows Forms application and
m. Notice that the C10lapPage control automatically docks

ag Forml (= | E |

= Il | [T Grid - |22 Chart - £5] Report ~
Choose fields to add to table: Olap Grid | Qlap Chart | Raw Data

[4

Drag fields between areas below:

“ Fitter 1] Column Fields

=] Row Fields ¥ Values

Now, let us select a data source for the application. Select the C10lapPage @& tivate the
smart designer by clicking the small triangle that appears at the ,top right corné control. Use the

combo box next to “Choose Data Source” to create a project d ource and assign it to the control.

For this sample, find the Northwind database and select the “Invoice s shown below:

Data Source Configuration Wizard

Choose Your Database Objects

|
==

Which database objects do you want in your dataset?

#-[C]F Tables
=[5 Views
: =} Categery Sales for 1995
Current Product List
Invoices

Order Details Extended
Order Subtotals
Product Sales for 1995
Products Above Aver,
Quarterly Orders
Sales by Category
Ten Most Exgensi

1 O O o O O O O o O IO

| < Previous | [Finish]| Cancel |

Note that as soon as you select the data source, the fields available appear in the C1OlapPanel on the
left of the form.

The application is now ready. The following sections describe the functionality provided by default,
without writing a single line of code.

Creating OLAP Views

Run the application and you will see an interface similar to the one in Microsoft Excel. Drag the
“Country” field to the “Row Fields” list and “ExtendedPrice” to the “Value Fields” list, and you will see
summary of prices charged by country as shown below:

B8 Form1 (=] (5]
5 | | [Grid - |22 Chart ~ £ Report ~
Choose fields to add to table: Olap Grid | Olap Chart | Raw Data
Address - ExtendedPrice Total -
City =1|| Argentina 8,119
Ly Austria 128,004 128,004
E”St“’merlrf Belgium 33,825 33,825
2
Hstemertame Brazil 106,926 106,926
Discount Canad 50,196 50,196
7| BxtendedPrice anaca ’ E
- . T || Denmark 32,661 32,661
Draq fields between areas below: Finland 18,810 18,810
7 Filter % ColumnFields | T2<E 81,338 LR
Germany 230,285
Ireland 40 980
Italy 15,770
Mexico 23582
] Row Fields % Values Norway 3,735
Portugal 11,472
Spain 7,083
Conemedmin i
2155 Records

similar to the previous is time the bars are split to show how much was sold by each

salesperson:

sy Forml
=5 [|FHGrid + [Chart ~ {3 Report -
Choose fields to add to table: Olap Grid | Olap Chart | Raw Data
[ProductMame -
= Quantity ExtendedPrice by Country and Salesperscn
[] Region
[] RequiredDate
Salesperson I Argentina
[l ShipAddress 3 BAIU;trla
o . elgium
[T ShipCity grazil
[ShipCountry DCanadi
7] ShinMame i E?nrraar:d I Andrew Fuller
; France I Anne Dodsw
Drag fields between areas below: G -
7 Filt £ Column Field Treland [Jonet Lo
ilter olumn Fields oy I Laura
Mexico B Marg
MNorway :
Polanél £ Mich
Portugal Mancy
Spain
Sweden
Switzerland
" Row Fields X Values witzenan
(County _____JJ[ExtendedPrice o
Venezuela
T T
0 100,000 200,000 300,000
I I
| 2155 Records 1|
Move the mouse over the chart and you will see tooltips that show t of the salesperson and the

amount sold when you hover over the chart elements.

Now create a new view by swapping the “Sales! Cougry” fields by dragging them to the

opposite lists. This will create a new chart that e erson instead of country:

r .|
sy Forml =NACH| X
=5 [|FHGrid + [Chart ~ {3 Report -

Choose fields to add to table:
[ProductMame -
[Quantity ; MPrice by Salesperson and Country
[] Region
[] RequiredDate
ndrew Fuller
[] ShipAddress
[ShipCity e Dodsworth
[7] ShipCountry _ [Argentina [Mexice
Janet Leverling B Austria I Morway
[Belgium [Poland
Laura Callahan B ez] Portugal
Margaret Peacock [Canads 3 Spain
[Denmark [Sweden
Michael Suyama [Finland [Switzerland
[France [UK
Mancy Davalic [Germany] usa
. I Ireland [Venezuela
] Row Fields Robert King I Iy
ExtendedPrice Steven Buchanan
0 100,000 200,000300,000
2,155 Records
b

The chart shows that Margaret Peacock was the top salesperson in the period being analyzed, followed
closely by Janet Leverling and Nancy Davolio.

Multiple Value Fields
By default, C10lap is configured to allow only one value field per view. When the user adds a value field
to the Values list in the C10lapPanel, the new field replaces any pre-existing ones.

In some cases, you may want to allow users to summarize multiple value fields at once. To enablg
you have to modify the value of the MaxItems property on the C10lapEngine.ValueFields collec
example, the code below initializes a C10lapPage to display a summary of sales price an t by
country and by salesperson:

// get a reference to the olap engine
var olap = this.clOlapPagel.OlapEngine;

// allow up to two value fields
olap.ValueFields.MaxItems = 2;

// summarize ExtendedPrice and Freight
olap.ValueFields.Add ("ExtendedPrice", "Freight");

// by Country and by SalesPerson
olap.RowFields.Add ("Country") ;
olap.ColumnFields.Add ("SalesPerson") ;

The result is shown below:

[ol Forml =S X)
=" W [Grid ~ |4 Chart = £5) Report ~
Choose fields to add to table: Olap Grid | Olap Chart | Ra
- X Anne Dodsworth Jan
City = Country Ei ExtendedPrice Freight Ex
¥| Country Germany 8377 15,754 288
CustomerlD N W U X 6175 17225 1709
Customers CompanyMame . y 1643 2.962 2858
Discount 1625 7.404 1547
V| ExtendedPrice
7| Freight 9,585 1,213 1,510 B4
OirderNate 9,434 1.431 3,829 612 |
Drag fields between areas below: 5,035 388 967 71
" Filter 8.037 1554 4,880 245
5.878 1.058 1.591 238
5422 1,008 584 18
341 216 6,837 744
Venezuela 2,966 334 378 7
Belgium 2,867 170 2,808 37
Denmark 2345 100 0 0
Mexico 2191 274 0 0
Spain 978 309 224 16
Norway 622 9 0 0 i
Defer Lipdates 1 LLLJ ;
2155 Records, Sum = 131 908

Note that the Maxltems property can also be used to limit the maximum number of fields that the user
can add to the RowFields, ColumnFields, and FilterFields collections. By default, MaxIltems is set to 1 for
the ValueFields collection and to -1 on all others (which means allow any number of fields).

Conditional Field Formatting
In many applications it may be useful to highlight cells on the grid according to the values they contaig

For example, you may want to show values above a specific threshold with a green background or,
a bold font.

C10lap supports conditional formatting with three style properties available on the C10

ClOlapField.Style: This property contains a style that is applied by default to cells tha
values. It is mostly useful in views that contain multiple value fields, so users can easil
columns belong to each value field.

C1OlapField.StyleHigh: This property contains a style that is applied to cel
specified threshold. The threshold may be a specific value (e.g. 1,000) or it

C1OlapField.StyleLow: This property contains
specified threshold. Again, the threshold may b
percentage (e.g. 10%).

The code below creates conditional style ields in the view and causes cells in the bottom

10% of the value range to be display in the top 10% of the value range to be displayed

in green:

// set up conditional fo
foreach (var f in ol

{
bold with a red background

ap.ConditionType.Percentage;

y . FromArgb (255, 230, 230);

3 nType = Cl.Olap.ConditionType.Percentage;

sh. = 0.9;

olor = Color.FromArgb (230, 255, 230);
sh.FontBold = true;

}

The result is shown below:

[a5l C1Clap: Conditional Formatting - =R X)
=" B EiGridv Iﬂ(}mrt'%jReport -
Chioose fields to add to table: Olap Grid Clap Chart | Raw Data
3 Brazil Canada -
ProductMame ExtendedPrice Freight ExtendedPrice
Céte de Blaye 24,400 1.278 8263 |
CustomeriD Tarte au sucre 394 79 5774
Customers. Companyame Camembert Fierrot 5,923 1.395 4599
Discount Gnocehi di nonna Alice 4254 n 3610
V| ExtendedPnce i
Drag fields between areas below: Alice Mutton 1.053 143 3479
“F Fiter “H Column Fields Raclette Courdavault 3858 240 2,066
Grandma's Boysenberry Sprea 1.900 118 2,080
lkura 2730 39 1,823
Carnarvon Tigers 3225 98 1,600
12 Row Fields ¥ Values Manjimup Dried Apples 2822 283 1272
ExtendedPrice (Su Mozzarella di Gigvanni 1.346 926 1218
Freight {Sum) Chai 864 169
Scottish Longbreads 170
I Defer Updates Ll LiLJ
2155 Reco

Conditional formats may also be created and edited at run-ti
ClOlapPanel and selecting the “Field Settings...” option from the
properties dialog, which contains tabs for the Style, StyleHigh, and

users. Right-clicking a field in the
rings up the field
roperties of the field.

This is what the field editor looks like:

Field Settings: ExtendedPrice

Apply to Values Above
0.5
Style
Background: [J230.255. 2
Foreground:]
|| Bold: Pl

control d¥ om the C1FlexGrid grid, which means you can use all the C1FlexGrid features in your
C10lap applations. These features include owner-draw cells which allow for complete customization
over how cells are displayed to the user. For example, you could easily customize the grid to shows icons
for high and low values.

Creating OLAP Reports

This is an interesting chart, so let’s create a report that we can e-mail to other people in the company.
Click the “Report” button at the top of the page and you will see a preview showing the data on the first
page and the chart on the second page. In the preview dialog, click the “Page Setup” button and change
the page orientation to landscape. The report should look like this:

Print Preview

S B [|[4Zoom ~fd 4 1 of2 b B| X Close

i),

Now you can print the report or click the
send to others or post on the web.

Copying data to Exce
The built-in report @ but in some cases you may want to copy some or all the data to

Excel so ygu can pe Pnal analyses including regressions, create customized reports by

annot custom charts.

Th ts the clipboard by default, so you can simply select the data you are interested
in, pr , then paste it directly into an Excel sheet. The row and column headers are included

Summarizing Data
Before we move on to the next example, let’s create a new view to illustrate how you can easily
summarize data in different ways.

This time, drag the “SalesPerson” field to the “Row Fields” list and the “OrderDate” field to the “Column
Fields” list. The resulting view contains one column for each day when an order was placed. This is not
very useful information, because there are too many columns to show any trends clearly. We would like
to summarize the data by month or year instead.

One way to do this would be to modify the source data, either by creating a new query in SQL or by
using LINQ. Both of these techniques will be described in later sections. Another way is simply to gl
the parameters of the “OrderDate” field. To do this, right-click the “OrderDate” field and select t
“Field Settings” menu. Then select the “Format” tab in the dialog, choose the “Custom” for

“yyyy”, and click OK.

The dates are now formatted and summarized by year, and the OLAP chart looks like

ot Forml |
5 | |[7 Grid = |22 Chart ~ {3 Report ~
Choose fields to add to table: | Olap Grid | Qlap Chart | Raw []atal
CustemerName o
Discount ExtendedPrice by Salesperson and OrderDate
V| ExtendedPrice E
Freight
Andrew Fuller
OrderlD Anne Dodswerth
PestalCode
o e o Janet Leverling
Drag fields between areas below: Laura Callahan
W Filter i Column Fields Margaret Peacock N 1996
OrderDate . B 1997
Michael Suyama [1998
Nancy Davolic
1 Row Fields Z Values
Salesperson -
000 200,000 300,000
2155 Records

If you wanted to check placed by month or weekday, you could simply change the format

to “MMMM” or “dddd’

Drilling Rowan on
h cell in the OLAP grid represents a summary of several records in the data

underlying records behind each cell in the OLAP grid by right clicking it with the

the “Olap Grid” tab and right-click the first cell on the grid, the one that represents
Andrew Fullers’s sales in 1996. You will see another grid showing the 40 records that were used to
compute the total displayed in the Olap grid:

[a5 Forml =HECA[X
5 = | [Grid - |22 Chart - 3] Report ~
Choose fields to add to table: i Olap Grid Olap Chart | Raw []atal
Customerhame i 1996 1997 1988 T
Discount Andrew Fuller 21,757 70,444 74,337
- Ext. ol Detail View: 40 records |E|E|éj ‘1.-103
Frei . 6,563
7l Ord Address City Country CustomerID CustomerMame = I
Ord| 24 place Kléber Strasbourg France BLONP Blondesdds| pére et fils -390
Pos 24, place Kléber Strasbourg France BLONP Blondesdds| pére et fils £ 136 |
- Heerstr, 22 Leipzig Germany MORGK Mergenstern Gesundkost 144
Drag fie Heerstr, 22 Leipzig Germany MORGK Morgenstern Gesundkost P95
" Filte Berguvsvigen & Luled Sweden BERGS Berglunds snabbkdp p-865
Berguvsvigen & Luled Sweden BERGS Berglunds snabbkap p:692
Berguvsvigen & Luled Sweden BERGS Berglunds snakbkép 62
59 rue de I'Abbaye Reims France VIMET Vins et alcools Chevalier
Via Ludovico il Moro 22 Bergamo Italy MAGAL Magazzini Alimentari Riuniti
A Ro Via Ludovico il Moro 22 Bergamo Ttaly MAGAA Magazzini Alimentari Riuniti
IE 89 Chiaroscurc Rd. Portland UsA LOMEP Lonesome Pine Restaurant
Fl [l 3
] 1 I -
Records

Customizing the C10lapPage
The previous example showed how you can create a complete OLA using only a

C10lapPage control and no code at all. This is convenien in most you will want to customize

the application and the user interface to some degree.

Persisting OLAP views
We will start by adding a default view to the g pplication. To do this, right-click the project node
in the solution explorer, click the “Propery elect the “Settings” tab and create a new

setting of type string called “DefaultVig

Application Synchronize ieNgPode Access Modifier: Internal -

Build
Buid Event Applig ow you to store and retrieve property settings and other
gt [ESELE info jcation dynamically. For example, the application can save a
then retrieve them the next time it runs. Learn more about
Debug
Resources

Type Scope Value
NWINDCon... | (Conne... v | Appication |Provider=Microsoft.Jet OLEDB.

" W

This setting will be used to persist the view across sessions, so any customizations made by the user are
automatically saved when he closes the application and restored next time he runs it.

To enable this behavior, open the “Form1” form, switch to code view, and add the following code to the
application:

private void Forml Load(object sender, EventArgs e)

{
// auto-generated:
// This line of code loads data into the 'nWINDDataSet.Invoices' table.
this.invoicesTableAdapter.Fill (this.nWINDDataSet.Invoices);

// show default view: this assumes an application
// setting of type string called "DefaultView"
var view = Properties.Settings.Default.DefaultView;
if (!string.IsNullOrEmpty (view))
{
clOlapPagel.ViewDefinition = view;
}
else
{
// build default view now
var olap = clOlapPagel.OlapEngine;
olap.BeginUpdate() ;
olap.RowFields.Add ("ProductName") ;
olap.ColumnFields.Add ("Country") ;
olap.ValueFields.Add ("ExtendedPrice") ;
olap.EndUpdate () ;

}

// closing form, save current view as default t time
protected override void OnClosing (CancelEven

// save current view as new default
Properties.Settings.Default.DefaultVi
Properties.Settings.Default.Save (

el .ViewDefinition;

// fire event as usual
base.OnClosing(e) ;

}

asdasdasdas

The first line should alre you open the form. It was automatically generated to load
the data.

The next block of code overrides the form’s OnClosing method and saves the current view by reading

the C10lapPage.ViewDefinition property and assigning it to the “DefaultView” setting, which is then
saved.

If you run the project now, you will notice that it starts with the default view created by code. If you
make any changes to the view, close the application, and then re-start it, you will notice that your
changes are restored.

Creating Predefined Views

In addition to the ViewDefinition property, which gets or sets the current view as an XML string, the
C10lapPage control also exposes ReadXml and WriteXml methods that allow you to persist views
files and streams. These methods are automatically invoked by the C10lapPage when you click t
“Load” and “Save” buttons in the built-in toolstrip.

These methods allow you to implement predefined views very easily. To do this, start @ creatin e
views and saving each one by pressing the “Save” button. For this sample, we will creq five s
showing sales by:

Product and Country
Salesperson and Country
Salesperson and Year
Salesperson and Month
Salesperson and Weekday

vk wnN e

Once you have crated and saved all the views, create a neyeML file c efaultViews.xml” with a

.

single “OlapViews” node, then copy and paste all your ¢ ews into this document. Next, add an

“id” tag to each view and assign each one au e na najlle will be shown in the user interface

(it is not required by C10lap). Your XML file shou ok Ii

<OlapViews>

<ClOlapPage id="Product vs Coys
<!-- view definition omitt/r.s
<ClOlapPage id="SalesPersqa
<!-- view definition oy
<ClOlapPage id="SalesPg
<!-— view
<ClOlapPage id="Sa
<!-- view defin
<Cl0OlapPage

y ... ——>
s Weekday">
tted... —-—>

Now that the view definitions are ready, we need to exposed them in a menu so the user can select
them. To do this, copy the following code into the project:

private void Forml Load(object sender, EventArgs e)
{
// no changes here

/] .

// build menu with predefined views:

var doc = new System.Xml.XmlDocument () ;

doc.LoadXml (Properties.Resources.OlapViews) ;

var menuView = new ToolStripDropDownButton ("&View") ;

foreach (System.Xml.XmlNode nd in doc.SelectNodes ("OlapViews/ClOlapPage"))

{
var tsi
tsi.Tag

menuView.DropDownItems.Add (nd.Attributes["id"] .Value) ;
nd;

}
menuView.DropDownItemClicked += menuView DropDownItemClicked;
clOlapPagel.Updated += clOlapPagel Updated;

// add new view menu to ClOlapPage toolstrip
clOlapPagel.ToolStrip.Items.Insert (3, menuView) ;

The code creates a new toolstrip drop-down button, then loads the XML do he report
found. Each ité€

ty. The noge will be used later to

definitions and populates the drop-down button with the repq, ontains the view

name in its Text property, and the actual XML node in its Tag pr
apply the view when the user selects it.

The only part still missing is the code that will g i 0 the C10lapPage when the user selects
them by clicking the button. This is accompl§ ' ollowing code:

// select a predefined view
void menuView DropDownItemCli

{

ToolStripItemClickedEventArgs e)

var nd = e.ClickedIte
if (nd '= null)
{

XmlNode;

from XML
on = nd.OuterXml;

The code retrieves the report definition as an XML string by reading the node’s OuterXml property, then
assigns it to the C10lapPage.ViewDefinition property. It also shows the name of the view in the
C1OlapPage status bar using the LabelStatus property.

Finally, the code handles the Updated event to clear the status bar whenever the user makes any
changes to the view. This indicates that the view no longer matches the predefined view that was
loaded from the application resources.

The C10lapPage exposes most of the components it contains, which makes customization easy. You can
add, remove or change the elements from the ToolStrip, from the TabControl, and show status
messages using the LabelStatus property. You can also add other elements to the page in additiond®
C1OlapPage.

If you need further customization, you can also choose not to use the C10lapPage at all,

interface using the lower-level C10lapPanel, C10lapGrid, and C10lapChart controls.
for the C10lapPage control is included with the package and can be used as a startin
example in the “Building a custom User Interface” section shows how this is dga

Using LINQ as an OLAP data source
C10lap can consume any collection as a data source. It is not restricted to
particular, it can be used with LINQ.

LINQ provides an easy to use, efficient, flexible model for query ata. It makes it easy for developers
to create sophisticated queries on client applications without requi i
such as the creation of new stored procedures. These qu

C10lap so end users also have the ability to create thei ws of the data.

To illustrate this, create a new project and add a lap ol to the form. Instead of setting the
DataSource property in the designer and usig rocedure like we did before, this time we will

load the data using a LINQ query. To do tiy ing code to the form constructor:

public Forml ()

{
// designer
InitializeComponent () ;

// load all interesting tables into a DataSet

var ds = new DataSet();

foreach (string table in
"Products,Categories,Employees," +
"Customers,Orders,Order Details".Split(',"'))

string sgl = string.Format ("select * from [{0}]", table);
var da = new OleDbDataAdapter (sqgl, GetConnectionString())
da.Fill (ds, table):;

}

// build LINQ query and use it as a data source
// for the ClOlapPage control
/.

}

// get standard nwind mdb connection string
static string GetConnectionString()
{
string path =
Environment.GetFolderPath (Environment.SpecialFolger.Personal)
@"\ComponentOne Samples\Common";
string conn = @"provider=microsoft.jet.oledb.4.0;" +
@"data source={0}\clnwind.mdb;";
return string.Format (conn, path);

The code loads several tables from the North\4diad. e NorthWind database is available in
the “ComponentOne Samples” folder, whi 10lap setup places it. If you have the
database in a different location, you will h the GetConnectionString method as

appropriate.

Next, let’s add the actual LIN eryS@Ris is ayong simple statement:

// build LINQ query
var q =
from detail in ds.Tables["Order Details"].AsEnumerable ()
join product in ds.Tables["Products"].AsEnumerable ()
on detail.Field<int> ("ProductID")
equals product.Field<int> ("ProductID")
join category in ds.Tables["Categories"].AsEnumerable ()
on product.Field<int> ("CategoryID")
equals category.Field<int> ("CategoryID")
join order in ds.Tables["Orders"].AsEnumerable ()
on detail.Field<int> ("OrderID")
equals order.Field<int> ("OrderID")
join customer in ds.Tables["Customers"].AsEnumerable ()
on order.Field<string> ("CustomerID")
equals customer.Field<string> ("CustomerID")
join employee in ds.Tables["Employees"].AsEnumerable ()
on order.Field<int> ("EmployeeID")
equals employee.Field<int> ("EmployeeID")
select new

{

Sales = (detail.Field<short>("Quantity") *
(double)detail.Field<decimal> ("UnitPrice")) *
(1 - (double)detail.Field<float>("Discount")),

OrderDate = order.Field<DateTime> ("OrderDate"),
Product = product.Field<string> ("ProductName"),
Customer = customer.Field<string> ("CompanyName")
Country = customer.Field<string>("Country"),
Employee = employee.Field<string>("FirstName") +
employee.Field<string> ("LastName"),
Category = category.Field<string> ("Categor

i

// use LINQ query as DataSource for the lap
clOlapPagel.DataSource = g.TolList () ;

The LINQ query is divided into two parts. uses several join statements to connect the

tables we loaded from the database nected to the query by joining its primary key to a
field that is already available on . ith the “Order Details” table, then join “Products”

using the “ProductID” field, t e “CategoryID” field, and so on.

that the fields may map directly to fields in the tables, or they may
example is calculated based on quantity, unit price, and discount.

, it is converted to a list using LINQ’s ToList method, and the result is
Page.DataSource property. The ToList method is required because it causes the

If you run the project now, you will see that it looks and behaves just like before, when we used a stored
procedure as a data source. The advantage of using LINQ is that the query is built into the application.
You can change it easily without having to ask the database administrator for help.

Large data sources
All the examples discussed so far loaded all the data into memory. This is a simple and convenient way
to do things, and it works in many cases.

In some cases, however, there may be too much data to load into memory at once. Consider for
example a table with a million rows or more. Even if you could load all this data into memory, the
process would take a long time.

There are many ways to deal with these scenarios. You could create queries that summarize and §
the data on the server, or use specialized OLAP data providers. In either case, you woul P wi
tables that can be used with C10lap.

But there are also simpler options. Suppose the database contains information sands of,

capabilities of C10lap, which happen on the client, you could delegate so o the server,
and load only the companies the user wants to see. This is easy to accomp

special software or configurations on the server.

b and does

bt require any

For example, consider the following CachedDataTable class (thi s is used in the “SqlFilter” sample
installed with C10lap):

/// <summary>
/// Extends the <see cref="DataTable"/> class to load and cache
/// data on demand using a <see cref="Fill"/> method that takes
/// a set of keys as a parameter.
/// </summary>
class CachedDataTable : DataTable
{
public string ConnectionString { get; set; }
public string SqglTemplate { get; set; }
public string WhereClauseTemplate { get; set; }
Dictionary<object, bool> values =
new Dictionary<object, bool>();

// constructor
public CachedDataTable (string sglTemplate,
string whereClauseTemplate, string connString)
{
ConnectionString = connString;
SglTemplate = sglTemplate;
WhereClauseTemplate = whereClauseTemplate;

}

// populate the table by adding any missing values
public void Fill (IEnumerable filterValues, bool reset)
{
// reset table if requested
if (reset)
{
~values.Clear();
Rows.Clear () ;

}

// get a list with the new values
ist<object> newValues = GetNewValuesN@Alte 2
if (newValues.Count > 0)

{

// get sqgl statement and dat
var sgl = GetSglStatement
using (var da = new OleDfC@Al° s ConnectionString))
{
// add new values
int rows = da.Fi

}
}

tilterValues)

user requested them.

Note that the code uses an OleDbDataAdapter. This is because the sample uses an MDB file as a data
source and an OleDb-style connection string. To use this class with Sqgl Server data sources, you would
replace the OleDbDataAdapter with a SqlDataAdapter.

The code above is missing the implementation of two simple methods given below:

// gets a list with the filter values that are not already in the
// current values collection;
// and add them all to the current values collection.
List<object> GetNewValues (IEnumerable filterValues)
{
var list = new List<object>();
foreach (object value in filterValues)
{
if (! values.ContainsKey(value))
{
list.Add (value) ;
_values([value] =

}

true;

}

return list;

}

// gets a sgl statement to add new values to the table

string GetSglStatement (List<object> newValues)

{ return string.Format (SglTemplate, GetWhereClause (newValues

;tring GetWhereClause (List<object> newValues)

{ if (newValues.Count == || string.IsNullOrEmpty (W Claus plate))
{ return string.Empty;

}

// build list of values
StringBuilder sb = new StringBuilder
foreach (object value in newValues
{

if (sb.Length > 0) sb.Append

if (value is string)

{

sb.AppendFormat ("' {0}

P2 lue) .Replace("'", "''"));

}

else

{
sb.Append (val

ereClauseTemplate, sb);

The GetSgkStatement method builds a new SQL statement with a WHERE clause that loads the records
requested by the user that haven’t been loaded yet. It uses string templates provided by the caller in the
constructor, which makes the class general.

Now that the CachedDataTable is ready, the next step is to connect it with C10lap and enable users to
analyze the data transparently, as if it were all loaded in memory.

To do this, open the main form, add a C10lapPage control to it, then add the following code to the
form:

public partial class Forml : Form

{
List<string> _customerList;
List<string> _activeCustomerList;
const int MAX CUSTOMERS = 12;

These fields will contain a complete list of all the customers in the database, a list of t
currently selected by the user, and the maximum number of customers that c3
Set the maximum number of customers to a relatively small value to preveg
much data into the application at once.

Next, we need to get a complete list of all the customers in the database so select the ones
t contains only TNE customer name, not
is the codgthat loads the full

he wants to look at. Note that this is a long list but compact lis
any of the associated details such as orders, order details, etc. H

customer list:

public Forml ()
{

InitializeComponent () ;

// get complete list of customers
_customerList = new List<string> () g
var sgl = Q"SELECT DISTINCT Custga
"AS [Customer] FROM Customers";
var da = new OleDbDataAdaptexy
var dt = new DataTable () ;
da.Fill(dt);
foreach (DataRow dr in

{

_customerList.Ad stomer"]) ;

create this by right clicking the project node in the solution explorer, selecting
“Settings” tab as before:

Application
Build

Build Events
Debug
Resources
Services
Settings
Reference Paths
Signing
Security
Publish

Code Analysis

And here is the code that loads the “active” customer list from th

Synchronize Load Web Settings | [Z] View Code

Application settings allow you to store and retrieve property settings and other
information for your application dynamically. For example, the application can save
a user's color preferences, then retrieve them the next time it runs, Learn mere

about application settings...

Mame Type Scope

Value

» Customers System.Coll... |'”User
I s —

|v|<?xm|
—

String Collection Editor

Enter the strings in the collection (one per ling):

Hanari Carnes

Hungry Coyote Import Store
Island Trading

Laughing Bacchus Wine Cellars
Rancho grande

La maisen d'Asie

La corne d'abondance‘

// get active customer list

_activeCustomerList

foreach

{

new List<string>();
(string customer in Settings.Defaul

_activeCustomerList.Add (customer) ;

}

Now we are

// get data
var dtSales
Resources.
Resources.
GetConnectionSt
dtSales.Fill(_act

// assign dat
_clOlagPage.Da

ready to create a CachedD

("Category") ;
("Sales");

sign it to the C10lapPage.DataSource property:

The CachedDataTable constructor uses three parameters:

e SqglTemplate
This is a standard SQL SELECT statement where the “WHERE” clause is replaced by a
placeholder. The statement is fairly long, and is defined as an application resource. To see the
actual content please refer to the “SqlFilter” sample.

e WhereTemplate
This is a standard SQL WHERE statement that contains a template that will be replaced w
list of values to include in the query. It is also defined as an application resource conty
this string: “WHERE Customers.CompanyName in ({0})".

e ConnectionString

This parameter contains the connection string that is used to conneg
sample uses the same GetConnectionString method introduced e; s a reference

to the NorthWind database installed with C10Olap.

1. The user can see all the customers in the C10lap filter (no
loaded) and

s in the list, customers currently active

customerList;
= activeCustomerList.ToArray();
anged += filter PropertyChanged;

And here is Wie event handler that updates the data source when the filter changes:

// re-query database when list of selected customers changes
void filter PropertyChanged(object sender, PropertyChangedEventArgs e)
{

// get reference to parent filter

var filter = sender as Cl.0lap.ClOlapFilter;

// get list of values accepted by the filter
_activeCustomerList.Clear();
foreach (string customer in customerList)
{

if (filter.Apply (customer))

{

_activeCustomerList.Add (customer) ;

}

}

// skip if no values were selected
if (_activeCustomerList.Count == 0)
{
MessageBox.Show (
"No customers selected, change will not be applied.",
"No Customers") ;
return;

}

// trim list if necessary
if (_activeCustomerList.Count > MAX CUSTOMERS)
{

MessageBox.Show (
"Too many customers selected, list will ed.",
"Too Many Customers");

_activeCustomerList.RemoveRange (MA.
_activeCustomerList.Count - MAX C

}

// get new data
var dt = clOlapPage.DataSource ¢4
dt.Fill(_activeCustomerList) ;

engine’s ng event and make sure the “Customers” field is always active.

Here is the code that ensures the “Customers” field is always active:

public Forml ()
{

InitializeComponent () ;
// ** no changes here **

// make sure Customer field is always in the view
// (since it is always used at least as a filter)
_clOlapPage.Updating += _clOlapPage Updating;

}

// make sure Customer field is always in the view
// (since it is always used at least as a filter)
void _clOlapPage Updating(object sender, EventArgs e)

{
var olap = _clOlapPage.OlapEngine;
var field = olap.Fields["Customer"];
if (!'field.IsActive)
{
olap.FilterFields.Add (field) ;
}
}

mers included in the “Customers”

If you run the application now, you will notice that only the cu
setting are included in the view:

a5 NorthWind Sales Data Analysis (Sgl filtered)
5 I | [Grid + |2 Chart = 3] Report -
Choose fields to add to table: i Olap Gri ta
i diments Confections |
Country Hanari Carnes 2,379 1,212
| Customer E||| Hungry Coyote Impol 0 0 2,005
E}mdp'c’gef Island Trading A17 1,655 145
roer-ate La come d'abonda 498 0 1,000
Preduct i -
La maison 4 1,903 7715 2,086
Drag fields between areas below: 98 32 70
7 Filter H Column Fields 2 = =
24,526 5,146 71357
1] Row Fields
1 3
126 Records

To see othé stomers, right-click the “Customer” field and select “Field Settings”, then edit the filter

by selecting specific customers or by defining a condition as shown below:

ol Field Settings: Customer | = 5

Filt: 1
fer |Sublotals Custom Filter &J
Text Fitter ~

TI— Show items where the value:

% Clear Fitter

Equals... IStarts With " H
Does Not Equal...

@ And () Or

Begins With ..

Ends With. . INC’”E "

Cortains...

Does Not Contain.... [QK l l Cancel

Custom Filter....
|¥] Bottom-Dollar Markets - ||

When you click OK, the application will detect the change and will requestiiliie additionafllata from the

CachingDataTable object. Once the new data has been loaded, C10lap will Bnge and

update the OLAP table automatically:

r

o-! MorthWind Sales Data Analysis (Sqgl filtered)
5 | | [Grid - |22 Chart + &3] Report -

Choose fields to add to table: Qlap Grid Olap Chart | Raw Data

Categery - 4 Condiments

[T Country Hanari Carnes

|| HILARION-Abastos

S E}mdpl DS'E: Hungry Coyote Import Store

o pf ;f : & Hungry Owl All-Nigh 3,145 3478
roduc -

— Total 6,366 6,207

Drag fields between areas below:

7 Filter 1 Column Fields
Category
1 Row Fields X Values

}

420 Records

C10OlapCha nd some standard .NET controls.

The complete source code for this application is included in the “CustomUl” sample installed with
C1Olap.

The image below shows the application in design view:

o5 C10lap: Customn User Interface E=nEER==
My Custom Olap Application
View Sales by:

(.Ttg 26

Salesperson

Product

3
u] o -

é L1 3 1 3 1 3 1 3

Country Choose fields to add to table: -
Price Filter: = R ==
S55 Expensive City -
55 Moderate —— £
CustomerlD - i
§ Inexpensive _
" - Drag fields between areas below: ‘
Al Prices L
“ Fitter =5 Column Fields -
= '
Create Report... 1] Row Fields % Values I
(m] 0
There is a panel docked to the top of the form showing the applic re is a vertical toolstrip

group allows users to pick

one of three pre-defined views: sales by salesperson, by, S, or by c®untry. The next group allows
users to apply a filter to the data based on pro, e, moderate, or inexpensive). The last
button provides reporting.

The remaining area of the form if filled with

C1OlapChart on the right. These are the vill display the view currently selected.

The form also contains a C10lapPrj g anponent that will be used to generate the reports.
se it only appears in the tray area below the

s used as a data source for the grid and the chart, and is responsible for
data. Both the grid and the chart have their DataSource property set to

First, let’s get the data and assign it to the C10lapPanel:

private void Forml Load(object sender, EventArgs e)

{
// load data

var da = new OleDbDataAdapter ("select * from Invoices",
GetConnectionString());
var dt = new DataTable();

da.Fill (dt);

// assign it to ClOlapPanel that is driving the app
this.clOlapPanell.DataSource = dt;

// start with the SalesPerson view, all products
_btnSalesperson.PerformClick();
_btnAllPrices.PerformClick();

The code gets the data from the NorthWind database using a DataAdapter ag
DataTable to the C10lapPanel.DataSource property. It then uses the Perfg
clicks on two buttons to initialize the current view and filter.

The event handlers for the buttons that select the current view look like this:

void btnSalesperson Click (object sender, EventArgs €
{

CheckButton (sender) ;

BuildvView ("Salesperson") ;

}
void btnProduct Click(object sender,
{
CheckButton (sender) ;
BuildView ("ProductName") ;
}
void btnCountry Click (object
{
CheckButton (sender) ;
BuildView ("Country") ;

All handlers use a Build ethod given below:

// rebuild the view after a button was clicked
void BuildView (string fieldName)
{

// get olap engine

var olap = clOlapPanell.OlapEngine;

// stop updating until done
olap.BeginUpdate () ;

// format order dates to group by year
var £ = olap.Fields["OrderDate"];
f.Format = "yyyy";

// clear all fields
olap.RowFields.Clear () ;
olap.ColumnFields.Clear () ;
olap.ValueFields.Clear () ;

// build up view
olap.ColumnFields.Add ("OrderDate") ;
olap.RowFields.Add (fieldName) ;
olap.ValueFields.Add ("ExtendedPrice") ;

// restore upadtes
olap.EndUpdate () ;

The BuildView method gets a reference to the C10lapEngigmbiject pr ed by the C10lapPanel and

-/

The code then sets the format of the “Order[g i o “yyyy” so sales are grouped by year and
rebuilds view by clearing the engine’s Roygelds, C8 ields, and ValueFields collections, then

immediately calls the BeginUpdate method to stop upq Il the new view has been completely

defined. This is done to improve performance.

Before running the app
like this:

void btnExpensive Click (object sender, EventArgs e)
{
CheckButton (sender) ;
SetPriceFilter ("Expensive Products (price > $50)", 50, double.MaxValue) ;
}
void btnModerate Click(object sender, EventArgs e)
{
CheckButton (sender) ;
SetPriceFilter ("Moderately Priced Products ($20 < price < $50)", 20, 50);
}
void btnInexpensive Click (object sender, EventArgs e)
{
CheckButton (sender) ;
SetPriceFilter ("Inexpensive Products (price < $20)", 0, 20);
}
void btnAllProducts Click (object sender, EventArgs e)
{
CheckButton (sender) ;
SetPriceFilter ("All Products", 0, double.MaxValue);

All handlers use a SetPriceFilter helper method given below:

// apply a filter to the product price
void SetPriceFilter (string footerText, double min, do max)
{

// get olap engine

var olap = clOlapPanell.OlapEngine;

// stop updating until done
olap.BeginUpdate () ;

// make sure unit price field is the view
var field = olap.Fields["UnitPrid¥
olap.FilterFields.Add (field) ;

// customize the filter to C Plition
var filter = field.Filte
filter.Clear();

filter.Conditionl.Opg

.LessThanOrEqualTo;
= max;

Cl.0lap.Cogndi
filter.Condiflion?2 .

= footerText;

As before, the code gets a reference to the C10lapEngine and immediately calls BeginUpdate.

It then gets a reference to the “UnitPrice” field that will be used for filtering the data. The “UnitPrice”
field is added to the engine’s FilterFields collection so the filter will be applied to the current view.

This is an important detail. If a field is not included in any of the view collections (RowFields,
ColumnfFields, ValueFields, FilterFields), then it is not included in the view at all, and its Filter property
does not affect the view in any way.

The code proceeds to configure the Filter property of the “UnitPrice” field by setting two conditions that
specify the range of values that should be included in the view. The range is defined by the “min” and
“max” parameters. Instead of using conditions, you could provide a list of values that should be

included. Conditions are usually more convenient when dealing with numeric values, and lists are

for string values and enumerations.

Finally, the code calls EndUpdate and sets the FooterText property of the C10lapPrinjfifocume it
will be automatically displayed in any reports.

The methods above use another helper called CheckButton that is listed be

// show which button was pressed

void CheckButton (object pressedButton)

{
var btn = pressedButton as ToolStripButton;
btn.Checked = true;

var items = btn.Owner.Items;
var index = items.IndexOf (btn);
for (int i1 = index + 1; 1 < items.Count; i+
{
if (! (items[i] is ToolStripButtgn)

((ToolStripButton)items[i]) .

for (int 1 = index - 1; i > 0 && ®PoolStripSeparator); i--)

if (! (items[i] is ToolStrig
((ToolStripButton)items[i]

The application is
of the agicaig

g5 C1Olap: Custom User Interface

[l =L S |

View Sales by:

(.g
Salesperson
Product

Country

Prig=t
Country
S88 by 2

55 Moderate

§ Inexpensive

* All Prices

[rrrrrr

Create Report...

Argentina
Austria
Belgium
Brazil
Canada
Denmark
Finland
France
Germany
Ireland
Italy
Mexico
Norway
Poland
Portugal
Spain
Sweden
Switzerland
UK

usa

My Custom Olap Application

1594

19170
6,307
9909
5141
1.187
316

17,300

3417
6443

380
4682

1,589
2,976
4608
3.047
6282
29182

1395

1.804
50,373
8.483
46517
33520
2231
12,461
37971
106.012
23135
6,440
14,349
1,758
1.267
7191
3.952
24187
13,438
24203
120,259

1396
6315
53454
13,023
E0.500
11,526
9143
3233
26,088
30.856
20,402
2350
4545
3977
2265
2652
11,055
25,700
3147
28486
96,144

m

Argentina
Austria
Belgium
Brazil
Canada
Denmark
Finland
France
Germany
Ireland
Italy
Mexico
Morway
Poland
Portugal
Spain
Sweden
Switzerland
UK

usa
Venezuela

View showing sales for all products, grouped by year and countgy. Notice how
approaching $300,000.

If you click the “SS Expensive” button, the filter is applied and the vi

how now the chart shows values approaching $80,000 i

about one third of the sales:

o5 C1Olap: Custom User Interface

View Sales by:

3

Salesperson

Product

9

Country

Price Filter:

P

Argentina
Austria
Belgium
Erazil
Canada
Denmark
Finland
France
Germany
Ireland
Italy

My Custom Olap Application

6,285
4783
27,364

4 nnre

shows values

ges immediately. Notice
pensiv®values are responsible for

Lrgentinag
Austria
Belgium
Brazil
Canada
Denmark
Finland
France
Germany
Ireland
Italy
Mexico
MNorway
Poland
Portugal
Spain
Sweden
Switzerland
UK

Usa
Venezuela

I
0

T T T
20,000 40000 60,000 80,000

194
B 1995
O/ 199%

The last piece missing from the application is reporting. Users can already copy data from the OlapGrid,

paste it into Excel, and print or save the results. But we can make it even easier, by allowing them to

print or create PDF files directly from within the application.

To do this, let us add some code to handle clicks in the “Report...” button. The code is very simple:

void btnReport Click(object sender, EventArgs e)
{
using (var dlg = new Cl.Win.Olap.ClOlapPrintPreviewDialog())
{
dlg.Document = clOlapPrintDocumentl;
dlg.StartPosition = FormStartPosition.Manual;
dlg.Bounds = this.Bounds;
dlg.ShowDialog (this) ;

If you have done any printing in .NET, the code should look familiar. It starts by instanjiting a
C1O0lapPrintPreviewDialog. This is a class similar to the standard PrintPreviewDialog, with a fe

enhancements that include export to PDF capability.

The code then sets the dialog’s Document property, initializes its position, ialog. If you

run the application now and click the “Report...” button, you should see a @ dPne below:

[Print Preview lﬂlﬁ
S8 [|[&Zoom ~ 4 4 1 of2 B P| X Close

From

C

Oneo engths in Olap applications is interactivity. Users must be able to create and modify

views eas quickly see the results. C10lap enables this with its Excel-like user interface and user

friendly, simple dialogs.

But in some cases you may want to configure views using code. C10lap enables this with its simple yet
powerful object model, especially the Field and Filter classes.

The example that follows shows how you can create and configure views with C10lap.
Start by creating a new WinForms application adding a C10lapPage control to the form.

Switch to code view and add the following code to load some data and assign it to the C10lapPage
control:

public Forml ()
{

InitializeComponent () ;

// get data

var da = new OleDbDataAdapter ("select * from invoices",
GetConnectionString()) ;

var dt = new DataTable();

da.Fill(dt);

// bind to olap page
this.clOlapPagel.DataSource = dt;

// build initial view
var olap = this.clOlapPagel.OlapEngine;
olap.ValueFields.Add ("ExtendedPrice") ;
olap.RowFields.Add ("ProductName", "OrderDate");
}
static string GetConnectionString()
{
string path = Environment.GetFolderPath (
Environment.SpecialFolder.Personal)
@"\ComponentOne Samples\Commo
string conn = @"provider=microsoft.je edb ;da source={0}\clnwind.mdb;";
return string.Format (conn, path);

The code loads the “Invoices” view fbm ind database (installed with C10lap), binds the data

at shows the sum of the “ExtendedPrice” values

public Forml ()
{

InitializeComponent () ;

// get data
// no change..

// bind to olap page
// no change..

// build initial view
// no change..

// format order date
var field = olap.Fields["OrderDate"];
field.Format = "yyyy";

// format extended price and change the Subtotal type
// to show the average extended price (instead of sum)
field = olap.Fields["ExtendedPrice"];

field.Format = "c"

field.Subtotal = Cl.0Olap.Subtotal.Average;

The code retrieves the individual fields from the Fields collectio ich contaigs all the fields specified

Now suppose you are interested only in a sujg ata, say a few products and one year. A user

would right-click the fields and apply filte b D n do the exact same thing in code as shown
below:

public Forml ()
{

InitializeComponent () ;

// get data
// no changes..

// bind to olap page
// no changes..

// build view
// no changes..

// format order date and extended price
// no changes..

// apply value filter to show only a few products
Cl.0Olap.ClOlapFilter filter = olap.Fields["ProductName"].Filter;
filter.Clear() ;

filter.ShowValues = "Chai,Chang,Geitost,Ikura".Split(',"');

// apply condition filter to show only some dates
filter = olap.Fields["OrderDate"].Filter;
filter.Clear() ;
filter.Conditionl.Operator =
Cl.Olap.ConditionOperator.GreaterThanOrEqua
filter.Conditionl.Parameter = new DateTime (1996, 1,
filter.Condition2.0Operator =
Cl.0Olap.ConditionOperator.LessThanOrEqualTo;
filter.Condition2.Parameter = new DateTime (19
filter.AndConditions = true;

31);

The code starts by retrieving the C10lapFj
Then it clears the filter and sets its Sh

“OrderDate” field. This time, we want to show
t to enumerate all days in the target year. Instead, we use a
“condition filter” whic o conditions.

ns property specifies how the first and second conditions should be applied (AND
s case, we want dates where both conditions are true, so AndConditions is set to

nf C10lap: Configure Fields in Code = | E S

5 = [Grid - |2 Chart ~ {3 Report ~

Choose fields to add to table: Olap Grid | Olap Chart | Raw Data

e ProductMame CrderDate ExtendedPrice Tetal

[0 City L ehai 1996 $39347 $393.47
||] Country flan 1996 $354.78 $354.78

[CustomerdD Geitost 1996 $47.66 $47.66

[Bl Customess Comnanublame %1 300 1996 $816.49 $816.49

Drag fields between areas below:

7 Filter = Column Fields Total Total $412.98 $412.98

1] Row Fields % Values

’—‘

CrderDate

2155 Records

	What is C1Olap
	Introduction to Olap
	C1Olap Architecture
	C1OlapPage
	C1OlapPanel
	C1OlapGrid
	C1OlapChart
	C1OlapPrintDocument

	Quickstart
	An Olap application with no code
	Creating OLAP Views
	Multiple Value Fields
	Conditional Field Formatting
	Creating OLAP Reports
	Copying data to Excel
	Summarizing Data
	Drilling Down on the Data

	Customizing the C1OlapPage
	Persisting OLAP views
	Creating Predefined Views

	Using LINQ as an OLAP data source
	Large data sources
	Building a custom User Interface
	Configuring Fields in Code

