
BEST PRACTICES

FOR USING

DATAGRIDS

EFFECTIVELY

IN .NET

APPLICATIONS

DIRK STRAUSSBY

www.grapecity.com

Table of Content

03

04

05

06

08

09

11

14

17

19

23

24

Introduction

What About Grid Views for Developers?

What Is a Datagrid?

Putting Datagrids to Work

Using Datagrids in .NET

Buy or Build your Datagrid?

Incorporating Datagrids Into a .NET App

Additional Datagrid Features

FlexGrid for the Web

Incorporating Data into Datagrids

Loading Excel Data into a .NET Datagrid

Next Steps

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS

Introducción

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 03

Since I started my career, I can always remember having a datagrid control (also known as a grid view)

available to use in my applications — whether WinForms or web-based applications.

This got me thinking: when were there not grid views for data? For how long have computer folks had the

notion of using a datagrid in applications?

It would seem as though the first widely used spreadsheet was VisiCalc, which was released in 1979 by

Software Arts. It was so popular that many believe that VisiCalc allowed the computer to graduate from a

hobby for tech geeks to a serious business tool.

The success of VisiCalc was relatively short-lived in today’s terms when compared to juggernauts such as

Microsoft Office. In 1983, Lotus Software released the famous Lotus 1-2-3. Lotus 1-2-3 was popular enough

to be a significant contributor to the success of the IBM PC. So the idea of giving users a grid-based

interface for working with tabular data goes back at least to with VisiCalc — and seems to have been a

pretty popular idea.

VisiCalc image from atariwiki.org licensed under Creative Commons Share Alike License.

What About Grid Views
for Developers?

Before the .NET Framework was even a thing, there

were default Visual Basic and ActiveX datagrid

controls. GrapeCity was offering developers

datagrids such as VSFlexGrid and TrueDBGrid, and

software systems relying on these grids are still in

use today.

Modern developers are fortunate to have

wide-ranging industry support for datagrids in their

applications. There are so many control sets for .NET

developers, and all of them include a datagrid

control.

Developers can now create a grid-based UI across

multiple platforms and application types.

We'll take a look at the options for integrating

datagrids into .NET apps. Specifically, we'll start

WinForms-based desktop apps, but also take a look

at options for web apps using ASP.NET MVC or

Blazor. We'll also consider the pros and cons of

building your own (extending DataGridView) versus

using a commercial datagrid.

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 04

Many applications focus on data — manipulating

data, analyzing data, reporting data — and tabular

data is usually displayed in an on-screen grid. It's

therefore important to provide to the user as much

functionality as possible. If you have ever used any

kind of spreadsheet software, you will know why

datagrids provide such flexibility and power in

data-focused applications.

Regardless of what control set you decide to use,

datagrids will be the cornerstone of your

application. They provide a rich set of features that

allow users to structure their data into something

that makes sense — even functionality as simple as

sorting and filtering data.

Apart from datagrids available out of the box in

the Visual Studio default controls, there are also

many open source and commercial controls

available. These allow you to integrate datagrids

into your applications using just a few lines of

code.

What Is a Datagrid?

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 05

https://visualstudio.microsoft.com/es/

As mentioned earlier, if you are developing a data-driven application, it makes sense to use a datagrid. It

allows your users to easily make sense of the data they are presented with.

Datagrids offer features such as:

This means that datagrids are not only suitable for displaying data; they are also capable of distributing that

data.

Datagrids in applications are invariably bound to some sort of data source. The source of the data is

irrelevant to a datagrid.

Developers can pull data from a variety of different data sources such as:

This also means users can modify data in place and update the data source, often in real time. Due to the

update capabilities, datagrids provide users with important data validation features.

It is safe to say that datagrids and spreadsheet functionality have started to overlap more and more in recent

years. Developers expect to be able to structure a datagrid with data, as they are accustomed to doing in a

spreadsheet. This could include specific formatting of data cells based on the data represented in the cell.

For example, think of a cell with a different font or color based on the data value passing a score or not.

Custom cell formats might even include a visual representation of the data it contains through sparklines.

Putting Datagrids to Work

Being able to glance over large volumes

of data with the scroll of a mouse wheel

Sorting the data by a column or other

subset of data

Selecting and extracting patterns in

the data presented

Industry-standard

spreadsheets

Third-party APIs Queries to locally

attached or network

databases

Exporting data into easily distributable

electronic or paper-based formats

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 06

Another critical but often overlooked feature is

accessibility and keyboard navigation.

At the beginning of my career, I developed an

application for entering job cards. I was surprised to

see that the users kept their eyes fixed on the paper

job card while letting muscle memory do the work

when they tabbed between the fields and entered

the data. It is often extremely difficult for users to

remap their muscle memory when using a new

application.

Think back to the first mobile phones with physical

keypads. Back then, we typed without looking at the

keypad. Muscle memory did all the work for us.

Now imagine rearranging all those keys. It would be

extremely difficult for users to type messages. Now

imagine having a different keypad layout for each

mobile phone. Productivity would plummet as users

had to adapt to the change.

This is what makes datagrids so powerful. They

function much in the same way that spreadsheets

do, and users can easily adapt to the same type of

data input across the different devices and

platforms. Developers, however, must take care to

keep the datagrids that they build into their

applications as easily accessible and functional as

possible.

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 07

Today, developers do not need to code their

datagrid controls by hand. The quickest way to

incorporate the functionality of a datagrid into your

application is to use one that comes out of the box

with Visual Studio.

The DataGridView control replaces the legacy

DataGrid control in WinForms, and introduces

additional functionality to the legacy control. You

can still find the DataGrid control, but this is more

for maintaining backward compatibility. As you have

probably guessed, the DataGridView control

displays data in a tabular form, and will display that

data irrespective of the data source.

Binding data to the DataGridView control is easily

accomplished by setting the DataGridView control’s

Using Datagrids in .NET

DataSource property. If you have a data source that

contains multiple datasets, you use the DataMember

property to specify which set of data the

DataGridView should bind to.

Developers can also consider implementing one of

several open-source datagrid components into their

projects. Open source is really big these days — it

offers developers a chance to have a direct impact

on the future development of open source offerings.

While these approaches to working with data in

your application are valid options, I believe that

commercial controls, such as GrapeCity’s .NET

FlexGrid Datagrid, offers some unique advantages.

FlexGrid is fast, flexible, and packed with features.

It is also available across:

With assemblies ranging from 150 KB in ASP.NET

MVC to 1.3 MB in WinForms, it has an extremely

small footprint. It is also very fast, loading millions

of records in seconds.

It includes flexible data binding, multi-format export

and import, formatting of presented data, as well as

exhaustive samples and customization.

DESKTOP

WinForms

WPF

UWP

ActiveX

WEB

ASP.NET MVC

Blazor

JavaScript

NATIVE MOBILE

Xamarin

LIGHTSWITCH SILVERLIGHT

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 08

https://docs.microsoft.com/en-us/dotnet/desktop/winforms/controls/datagridview-control-windows-forms?view=netframeworkdesktop-4.8

https://www.grapecity.com/componentone/flexgrid-net-data-grid-control
https://www.grapecity.com/componentone/flexgrid-net-data-grid-control

Dedicated support for

implementation as well

as developer support

Single point of contact

when requiring support

QEasier upgrade paths

for newer versions

Restrictive licensing Cost
Unable to tailor the

source code for your

needs

As mentioned earlier, there are many open-source offerings to choose from. A commercial offering, however,

does provide some definite advantages.

It is therefore especially important that you choose a product with strong community support and adoption,

and in the case of software controls, features.

Consider the ability to freeze rows in the grid. This comes built-in with GrapeCity’s FlexGrid control. Set the

AllowFreezing property to a column, row, or both — and when you hover your mouse over the grid, an icon

displays allowing you to freeze that row or column.

These can be things such as:

Drawbacks to commercial offerings, however, can include the following:

Buy or Build your Datagrid?

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 09

Compare this to adding the same functionality to the standard WinForms DataGridView control. Essentially,

you would need to add a context menu to your grid. Then you need to select the row by right-clicking the

mouse on the grid via the CellMouseDown event. And finally you need to enable the freezing of the selected

row in the context menu click event.

Looking at the way this implementation works in the DataGridView (shown below), it is clear that FlexGrid’s

implementation (the previous Form1 example above) is visually more pleasing and far simpler to implement.

dgFlexGrid.AllowFreezing = C1.Win.C1FlexGrid.AllowFreezingEnum.Both

private void freezeColumnToolStripMenuItem_Click(object sender, EventArgs e)

{

 dgWinGrid.Rows[dgWinGrid.CurrentCell.RowIndex].Frozen = true;

}

private void dgWinGrid_CellMouseDown(object sender,

 DataGridViewCellMouseEventArgs e)

{

 var dataGrid = (DataGridView)sender;

 if (e.Button == MouseButtons.Right && e.RowIndex != -1)

 {

 var row = dataGrid.Rows[e.RowIndex];

 dataGrid.CurrentCell = row.Cells[e.ColumnIndex == -1 ? 1 : e.ColumnIndex];

 row.Selected = true;

 dataGrid.Focus();

 }

}

You can set the AllowFreezing property in code as follows:

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 10

You have to do a lot of heavy lifting with the

standard DataGridView control when trying to add

something as simple as row freezing. With

GrapeCity’s .NET FlexGrid Datagrid control, this

functionality (and a lot more) comes baked in.

Using a FlexGrid control in your WinForms

application is easy. If you are familiar with the

standard DataGridView control that ships with

Visual Studio, you will have no trouble using

GrapeCity’s .NET FlexGrid Datagrid control.

The example above loaded some data into the

standard DataGridView, then we added a bit of

customization code just to get the row freezing.

The following example shows off a sample project

Incorporating Datagrids
Into a .NET App

Trying to do this with a standard DataGridView when

very polished versions of these features come built in

with a commercial control is not a good use of

developers' time. Googling for a solution took me

longer than writing the code to implement grouping,

aggregation, and collapsible rows with FlexGrid.

I have created for illustrating .NET FlexGrid Datagrid

in apps. Here you can see the same data in the

FlexGrid control, and we'll see how easy it is to add

more sophisticated control over the display and

visualizations with just a few lines of code.

The application loads a JSON file with a list of cities

into a datagrid. When the application is run, the list

is displayed in the grid.

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 11

https://github.com/dirkstrauss/GrapeCityDatagrids

private void BindCityGrid()

{

 var tbl = Cities.CreateTable();

 dgFlexGrid.DataSource = tbl;

}

The code used to bind the data to the grid is as follows:

public class City : IModelObject

{

 public int Id { get; set; }

 public string CityName { get; set; }

 public string AccentCity { get; set; }

 public Province ProvinceName { get; set; }

 public double Latitude { get; set; }

 public double Longitude { get; set; }

}

That is all there is to it. I have an extension method that creates a DataTable from my list of cities and sets

the FlexGrid’s DataSource property to DataTable.

Another interesting thing to note is the City model. The code looks like this:

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 12

As you can see, with a minimal amount of code, we can create a datagrid with plenty of built-in functionality.

As you can see, an enum is defined as

the type of the ProvinceName

property. Because this property is an

enum, FlexGrid knows that it needs to

display the corresponding cell as a

dropdown list.

Editing the data in the grid happens

directly inside FlexGrid.

Out of the box, without adding any

code, you can apply filters to the

FlexGrid data.

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 13

GrapeCity’s .NET FlexGrid Datagrid control allows

developers to filter, group, and sort their data, as

well as offers the ability to handle right-to-left

languages with the globalized FlexGrid. It also

supports Excel-like editing, expandable detail rows,

rapidly updating grid info such as stock prices,

built-in formatting, and real-time user input

validation.

You can enable users to pin columns, freeze cells

(think Excel row and column freezing, as

demonstrated earlier), merge cells, perform virtual

scrolling, as well as use the TransposedGrid

extension. The latter allows you to represent

columns as data items and rows as item properties.

Think of those sites that offer comparison grids

Additional Datagrid Features

between products. This is what the TransposedGrid

extension allows you to do.

On mobile devices, developing applications using

Xamarin, the grid is responsive and feature-rich.

Another “I’m sold” feature of FlexGrid is the ability

to export selected data to Excel or PDF files. Even

more impressive is the ability to import data from

an Excel file. FlexGrid data can also be printed with

full support for page selection and many more

printing options.

FlexGrid offers many easy-to-implement features.

Consider the sales data for products in the

following grid.

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 14

private void Group()

{

 //Add group

 dgFlexGrid.GroupDescriptions =

 new GroupDescription[] { new GroupDescription("Product") };

 //Showing aggregate(sum) on the group header rows

 var col = dgFlexGrid.Cols[5];

 col.Aggregate = AggregateEnum.Sum;

 col.Format = "N2";

 //Setting grid's AllowMerging property to Nodes so that the group header

 //content can spill into adjacent empty cells

 dgFlexGrid.AllowMerging = AllowMergingEnum.Nodes;

 //Setting HideGroupedColumns property to true

 //in order to hide the grouped columns

 dgFlexGrid.HideGroupedColumns = true;

 //Customizing the string which is displayed on the group headers

 dgFlexGrid.GroupHeaderFormat = "{name}:{value}";

 //Customizing the appearance of the outline tree

 dgFlexGrid.Tree.Style = TreeStyleFlags.CompleteLeaf;

}

This data doesn’t make much sense to a user. With FlexGrid, we can easily introduce data grouping and

aggregation. Imagine that we wanted to see the total sales per product. Adding the following code will

accomplish this.

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 15

Run the application again: here

is your useful, grouped data.

Want to see the sales by associate? Just change the group description from “Product” to “Associate”.

With only a few lines of code, we enabled grouping of data, calculation of totals per grouped item, and

collapsible rows.

//Add group

dgFlexGrid.GroupDescriptions =

 new GroupDescription[] { new GroupDescription("Associate") };

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 16

The data is now grouped

differently.

Another advantage of using datagrid controls like

those from GrapeCity is that they give you the

flexibility to adapt your application to other

frameworks or expand from desktop platforms to

the web.

For example, WPF has its own DataGrid control with

limited features. GrapeCity's FlexGrid for WPF, while

similar in features to the WinForms version, has

been designed to take advantage of the Xaml

platform. For example, it uses CellTemplates instead

of OwnerDraw.

Many teams, however, are embracing web

technologies for application development, enabling

them to use a common, familiar set of languages

and frameworks across a variety of platforms.

But you quickly run into the same problem as .NET

datagrids: default datagrid implementations are

either simplistic or missing altogether. For example,

the popular Blazor framework has no datagrid

component in the toolbox, so developers only have

a basic HTML table! GrapeCity FlexGrid for Blazor is

essential if you want any sophisticated datagrid

features.

All of the features we've discussed so far for .NET

datagrids are also supported by GrapeCity ASP.NET

MVC FlexGrid for .NET-based web apps, and the

same features are also available in Wijmo FlexGrid if

your development is more focused on JavaScript.

Of the JavaScript, ASP.NET MVC, and Blazor

options, which is best for your application? In many

cases your existing development codebase and

FlexGrid for the Web

application architecture will dictate suggest which

GrapeCity datagrid will integrate most smoothly

with your existing code, development workflows,

and knowledge.

If you know you need datagrids in your application,

but are unsure about what web platform or

framework to use — and which GrapeCity datagrid

component will be most useful — we'll break it down

into some best practices and use cases that may

help you choose a path forward.

ASP.NET MVC (or better still, Razor Pages) is for

server-side HTML generation. Blazor is commonly

used for Single Page Applications (SPA) — web

applications that run in the browser. They perform

different roles for different requirements. Blazor is

not intended as a replacement for ASP.NET MVC or

Razor Pages. It is intended to provide a solution for

C# programmers who want to produce

Angular/React style applications, but don't want to

have to learn a lot of new tools.

A pure JavaScript solution is not usually running on

the server — it runs in the browser as part of the

web page — so there's less security, and more

dependent on data services which may need to be

developed using ASP.NET Core anyway. On the

other hand, JavaScript controls can be easily

integrated into almost any web application

regardless of the server-side architecture or

language.

Let's take a look at a brief example — and note that

this same app could be built with FlexGrid for either

ASP.NET MVC or any JavaScript framework.

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 17

Grouping data is easily

accomplished by dragging one

or more columns to the header

section of the grid. Data can

also be exported to Excel and

PDF directly from the grid.

In the above image, the Price value can’t be negative (negative values are indicated by the round brackets

around the price). As you can see, the validation flagged two price values and a Date value that is too far in

the past.

Data validation can

also be incorporated

into the DataGrid.

From the onset, you will notice

that rows can be collapsed or

expanded as needed.

Expanded rows display

detailed information. Cell

formatting can be based on

the data these cells contain, as

illustrated in the image below.

Another advantage of using datagrid controls like

those from GrapeCity is that they give you the

flexibility to adapt your application to other

frameworks or expand from desktop platforms to

the web.

For example, WPF has its own DataGrid control with

limited features. GrapeCity's FlexGrid for WPF, while

similar in features to the WinForms version, has

been designed to take advantage of the Xaml

platform. For example, it uses CellTemplates instead

of OwnerDraw.

Many teams, however, are embracing web

technologies for application development, enabling

them to use a common, familiar set of languages

and frameworks across a variety of platforms.

But you quickly run into the same problem as .NET

datagrids: default datagrid implementations are

either simplistic or missing altogether. For example,

the popular Blazor framework has no datagrid

component in the toolbox, so developers only have

a basic HTML table! GrapeCity FlexGrid for Blazor is

essential if you want any sophisticated datagrid

features.

All of the features we've discussed so far for .NET

datagrids are also supported by GrapeCity ASP.NET

MVC FlexGrid for .NET-based web apps, and the

same features are also available in Wijmo FlexGrid if

your development is more focused on JavaScript.

Of the JavaScript, ASP.NET MVC, and Blazor

options, which is best for your application? In many

cases your existing development codebase and

application architecture will dictate suggest which

GrapeCity datagrid will integrate most smoothly

with your existing code, development workflows,

and knowledge.

If you know you need datagrids in your application,

but are unsure about what web platform or

framework to use — and which GrapeCity datagrid

component will be most useful — we'll break it down

into some best practices and use cases that may

help you choose a path forward.

ASP.NET MVC (or better still, Razor Pages) is for

server-side HTML generation. Blazor is commonly

used for Single Page Applications (SPA) — web

applications that run in the browser. They perform

different roles for different requirements. Blazor is

not intended as a replacement for ASP.NET MVC or

Razor Pages. It is intended to provide a solution for

C# programmers who want to produce

Angular/React style applications, but don't want to

have to learn a lot of new tools.

A pure JavaScript solution is not usually running on

the server — it runs in the browser as part of the

web page — so there's less security, and more

dependent on data services which may need to be

developed using ASP.NET Core anyway. On the

other hand, JavaScript controls can be easily

integrated into almost any web application

regardless of the server-side architecture or

language.

Let's take a look at a brief example — and note that

this same app could be built with FlexGrid for either

ASP.NET MVC or any JavaScript framework.

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 18

Incorporating Data into
Datagrids

How you bring data into your .NET application

depends on your circumstances and requirements.

In the WinForms application we’ve discussed earlier,

I simply consumed a local JSON file with the cities’

data.

Let’s have a quick look at how the data logic is

structured. You will see that the WinForms solution

is split into three separate projects. These are:

 GrapeCity – contains the WinForms UI

 GrapeCity.Core

 GrapeCity.Data

SEPARATION OF CONCERNS

Keeping data in a separate project makes it really

easy to separate your application’s concerns from

one another. It also allows developers to swap out

the consumer (a DataGridView for example) from

the built-in control to something like the FlexGrid

control without having to change anything on the

data end.

Best of all, this approach ensures that you’re

maintaining your data grid’s state in your own code,

instead of relying on FlexGrid as your application’s

sole source of truth. In most applications you’ll need

to validate and save the data in your grid — so it’s

helpful to build your application accordingly by

keeping your data and UI code separate.

Several architectural patterns can help you enforce

this separation:

MODEL-VIEW-PRESENTER (MVP)

MVP uses a Presenter class as an intermediary

between your app’s data model and UI code. UI

code lives in the View, and when changes occur, the

View calls the Presenter. The Presenter decides if

and how to update the data.

Similarly, the application’s data model code and call

the Presenter when data changes. The Presenter

then decides how to update the UI to match the

data changes.

MODEL-VIEW-VIEWMODEL (MVVM)

MVVM is similar to MVP, but typically uses a View

Model with automatic data binding instead of a

Presenter, which must manually make UI updates.

MVVM is very popular in WPF apps, because many

built-in and third-party WPF components support

automatic data binding.

In addition, open source frameworks like

MVVMCross make it easy to share you application’s

data model and application code between platforms

such WPF, UWP, Xamarin.

DIRECT MODEL BINDING

FlexGrid lets you bind your grid’s data to your own

data class. While this doesn’t separate your app’s UI

and data concerns as much as MVP or MVVM, it still

gives you an automatically-updated data model that

will always be ready for validation or serialization.

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 19

https://github.com/dirkstrauss/GrapeCityDatagrids https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93presenter

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel

https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern

https://www.mvvmcross.com/

Since it’s the simplest approach, let’s take a look at how model binding works in practice using the Winforms

project we described earlier.

The solution would look something like the following in the Solution Explorer.

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 20

The GrapeCity.Data project is where the data logic resides. In it, I have a class called JsonCityData. This class,

as the name suggests, is responsible for providing my application with the city data read from a JSON store

(whether from a file or an API request).

This class implements the ICityData interface. The Interface simply tells my data what it should implement.

The JsonCityData class then provides the implementation of this interface. In the constructor of my

WinForms application, I tell it that it should expect an object of ICityData as a parameter.

I am now free to pass any object that inherits from ICityData to the Form’s constructor in the Program.cs

file.

public class JsonCityData : ICityData

{

}

private readonly ICityData _dataSource;

public Form1(ICityData dataSource)

{

 InitializeComponent();

 _dataSource = dataSource;

 LoadCityData();

 BindCityGrid();

}

static void Main()

{

 Application.EnableVisualStyles();

 Application.SetCompatibleTextRenderingDefault(false);

 var jsonDataSource = new JsonCityData();

 Application.Run(new Form1(jsonDataSource));

}

public interface ICityData

{

 IEnumerable<City> GetCityByName(string name);

 City GetById(int Id);

}

In this example, the application uses a JSON data source.

var jsonDataSource = new JsonCityData();

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 21

I can easily swap it out for an SQL data source. All I need to do is provide the implementation in the SQL

class.

If I need to read data from Excel, I can pass it as an instance of the Excel class.

var sqlDataSource = new SqlCityData();

var excelDataSource = new ExcelCityData();

Should the data be pulled from an API, I can use an instance of a class that takes care of that.

In each of these class instantiations — JsonCityData, SqlCityData, ExcelCityData, and RESTCityData — I will

create a specific class to contain an implementation of the ICityData Interface.

 The SqlCityData class will contain logic specific to reading the data from an SQL Server database.

 The ExcelCityData class will contain logic specific to reading data from an Excel spreadsheet stored

somewhere on a network drive.

 The RESTCityData will contain the logic for performing an API call to pull the data into the application.

As for the application, it just expects a data source that implements ICItyData. It already knows what to do

with the data. How that data is passed to it is up to the specific class implementation of the ICityData

Interface.

var restDataSource = new RESTCityData();

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 22

Loading Excel Data into a
.NET Datagrid

One of the FlexGrid features that stands out is its

ability to import data from Excel. Many times I have

heard developers wanting to roll their own, as it

were. This becomes quite complex when dealing

with Excel data. Go ahead and create an Excel file,

and rename the file extension from .xlsx to .zip —

you can unzip it as you would any other archive.

Have a look at the unzipped files and folders, you

will find the metadata of the data contained in the

Excel file. You will also find the data itself, stored in

one of the XML files. You could definitely write your

own parser that could process Excel files in this way

and pull out the data you need. Depending what you

need to do with the data, this parser can get rather

complex.

Developers generally opt to use a third-party library

(open source or commercial) for parsing Excel data,

rather than spend the time and money writing their

own parser.

There are a lot of resources you might find useful

when implementing this functionality in your

applications:

 For ASP.NET MVC, have a look at the

ComponentOne ASP.NET MVC FlexGridExcel

Import And Export demo.

 To see some sample code for a C# or VB.NET

WinForms app, download the FlexGrid and Excel

sample projects.

 The ASP.NET MVC Excel Import and Export

tutorial walks you through the code for

implementing Excel import/export functionality.

 GrapeCity provides a fantastic resource of sample

code.

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 23

https://demos.componentone.com/aspnet/5/mvcexplorer/FlexGrid/ExcelImportExport

https://demos.componentone.com/aspnet/5/mvcexplorer/FlexGrid/ExcelImportExport

https://www.grapecity.com/samples/flexgrid https://www.grapecity.com/samples/excel

https://www.grapecity.com/samples/asp-net-mvc-excel-import-and-export

https://www.grapecity.com/samples?display_limit=25

Next Steps

BEST PRACTICES FOR USING DATAGRIDS EFFECTIVELY IN .NET APPLICATIONS 24

https://www.grapecity.com/componentone/flexgrid-net-data-grid-control

https://www.grapecity.com/wijmo/demos/Grid/Overview/purejs

https://www.grapecity.com/support/portal

https://www.grapecity.com/videos

In this article, we briefly discussed what FlexGrid can

do for your .NET applications. I encourage you to get

the source code from GitHub and experiment with

the various options. Try adding different data

sources. Use the cities.json file and expand it to

include more cities. See how fast the grid loads with

a much longer list of cities.

To learn more about the FlexGrid control, as well as

see some Wijmo examples, have a look at

https://www.grapecity.com/wijmo/demos/Grid/O-

verview/purejs

There is a fantastic GrapeCity Support Portal

available to developers that includes Forums, Blogs,

and Documentation.

Personally, I learn easier when watching a video.

Here, GrapeCity has you covered too with a rich

collection of video content to get you going at the

GrapeCity Videos page.

To get in touch with the support team to open a

ticket or to access the community forums, head on

over to https://www.grapecity.com/support/contact.

There is such a wealth of documentation, video

tutorials, community support and dedicated

technical support available, that developers using

GrapeCity products will not be left in the lurch when

it comes to integrating a control such as the

FlexGrid into their own projects.

This makes the choice to use these controls a much

easier one due to the increased developer

confidence. Give the FlexGrid control a try today.

I know that you will love what you see.

