
Improve Designer-Developer Collaboration:

UNDERSTANDING
ASP.NET
CORE
PRABHAKAR MISHRA

Noe
Tachado

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved.

Abstract

Back to Table of Contents
02

ASP.NET Core is a new technology for building cross-platform web applications. These applications could be
developed on Windows, Mac or Linux and can be deployed on Windows or Linux servers.

ASP.NET Core’s TagHelper feature provides a readable, HTML-like markup that enables developers and web
designers to collaborate more closely and efficiently. In this white paper we’ll walk you through the basics of
TagHelpers, from concepts to custom development.

You’ll learn:

1. What TagHelpers are
2. How to use TagHelpers in your project
3. How to create custom TagHelpers
4. How to create custom TagHelpers based on popular libraries such as jQuery and Bootstrap
5. How ComponentOne ASP.NET MVC Edition integrates TagHelpers

Throughout the paper, you’ll see HtmlHelper code compared to TagHelper code, and identified by small icons: @
for HtmlHelper and <> for TagHelper.

Noe
Texto escrito a máquina

Noe
Texto escrito a máquina
m

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
03

Table of Contents

1. What Are TagHelpers?
 1.1. TagHelper Advantages
 1.2. Enabling TagHelpers in Projects
 1.3. Opting Out of TagHelpers

2. Understanding TagHelpers
 2.1. Built-In TagHelpers

3. Authoring Custom TagHelpers
 3.1. TagHelper Basics
 3.2. TagHelper Attributes
 3.3. Nested TagHelpers
 3.4. Creating a Simple TagHelper
 3.5. Creating a Login Form TagHelper
 3.6. Creating a TagHelper for a jQueryUI Widget: AutoComplete
 3.7. TagHelper for a Bootstrap Component: Carousel

4. ComponentOne ASP.NET MVC Edition Controls
 4.1. FlexGrid
 4.2. FlexChart
 4.3. ListBox
 4.4. Multiple Control Binding

5. HtmlHelpers to TagHelpers: C1Finance Application
 5.1. FlexGrid
 5.2. AutoComplete
 5.3. FlexChart

6. Conclusion

7. References

04
04
05
05

06
06

09
09
10
11
14
15
16
18

21
21
22
23
24

25
25
27
28

30

31

...

...

 ..

..

..

..

...

...

..

...

..

...

..

..

 ..

...

...

..

...

..

..

...

...

...

...

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
04

As one of the best new features of ASP.NET Core, TagHelpers simplify the work required to design views that
interact with the data model. You can write HTML that not only binds to the data model, but also offers the
advantages of HTML and CSS. TagHelpers allow you to provide robust, maintainable, reusable code with
information provided on the server.

In a nutshell, TagHelpers allow server-side code to create and render HTML elements in Razor views. Previously,
you’d write HtmlHelper code inside Razor to create views written in C# or VB. Although it could be written in
markup, the markup did not always provide HtmlHelper advantages like model binding.

TagHelpers, however, provide advantages of both HtmlHelpers and markup. MVC has many built-in TagHelpers for
various HTML elements, ranging from inputs and forms to asset libraries. It’s also possible to author custom
TagHelpers in ASP.NET Core MVC using C#.

Developers coming from Web Forms backgrounds will find TagHelper syntax to be familiar, but that’s the only
commonality between TagHelpers and Web Forms controls. Where Web Forms controls need full access of the
page and have a complex life cycle, TagHelpers can be thought of as directives on the server, similar to what Angular
is for client-side programming.

1. What are TagHelpers?

• TagHelpers enable you to write robust server-side code that’s easy for designers to understand. The HTML-like
 markup of TagHelpers is clear for non-developers conversant with HTML and CSS, and they need not know C#.

• The markup code for TagHelpers is self-explanatory; we’ll look at differences between HtmlHelpers and
 TagHelpers in the next section.

• The built-in IntelliSense support enhances productivity.

• TagHelper is an opt-in feature. You can choose to use it or to opt out of it.

Let’s get started with integrating TagHelpers into your projects.

1.1. TagHelper Advantages

First, the “Microsoft.AspNetCore.Mvc.TagHelpers” package should be added to the project via NuGet. This is handled
by the template when a project is created.

When a new project is created inside Visual Studio, the following code is added to _ViewImports.cshtml file by
default:

1.2. Enabling TagHelpers in Projects

Use @removeTagHelper to stop using TagHelpers in a particular view. To specifically opt out of TagHelpers for
certain tags, use the “!” character.

In this example, the asp-for TagHelper is not applied to the label:

1.3. Opting Out of TagHelpers

This enables the built-in TagHelpers inside the project. Similarly, TagHelpers can be added to a project from a
custom assembly:

To use a specific TagHelper from an assembly, the declaration should include the fully-qualified name of the
TagHelper:

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
05

@addTagHelper *, Microsoft.AspNet.Mvc.TagHelpers

@addTagHelper *, C1,AspNetCore.Mvc

@addTagHelper C1.AspNetCore.Mvc.TagHelpers.FlexGridTagHelper,
C1. C1.AspNetCore.Mvc

<!label asp-for="Users.UserId">User Name</!label>

Noe
Resaltado

Noe
Resaltado

Noe
Resaltado

Noe
Resaltado

We’ll look at input in our example. Here’s a typical input created using HtmlHelper:

The advantage of this code is that we get model binding, but it’s also hard to understand for a designer. In addition,
class is a reserved word in C#—we can apply a style by using @class in HtmlHelpers, but we’ll get no help with
HTML styles in the editor, since what follows class is a string.

2.1.1. Input Control

Now that we’ve included TagHelpers in our project, let’s look at some of the built-in TagHelpers to understand how
they make life easy for developers and designers.

2. Understanding TagHelpers

ASP.NET Core has the following built-in TagHelpers:

• Anchor: Generates hyperlinks
• Cache: Manages partial page caching
• Environment: Controls content rendering based on the runtime environment
• Form: Generates form elements
• Input: Generates input elements
• Label: Outputs label elements
• Link: Processes link elements
• Option: Targets individual options in a select list
• Script: Processes script tags
• Select: Generates dropdown lists
• TextArea: Processes textarea tags
• ValidationMessage: Generates individual validation errors
• ValidationSummary: Renders the validation summary message

2.1. Built-In TagHelpers

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
06

@Html.EditorFor(m=>m.Users.UserId, new { @class="someCss"})

Let’s consider another example that involves a typical login screen using form TagHelpers. Here’s the basic HTML
markup:

As you can see, we’re missing model-binding. Here’s the same form in HtmlHelpers, with model-binding:

Now let’s look at TagHelpers. ASP.NET Core has built-in TagHelpers that target attributes of the form element. For
example, asp-controller assigns the controller to the form; asp-action assigns the action; and the input elements
can have model binding.

2.1.2. Form

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
07

<input id="user" class="someCss" type="text" name="Users.UserId" value="" />

In contrast, the same code could be written using TagHelpers:

We achieve model-binding with the asp-for attribute, and we get a nice IntelliSense when we apply style to the
input sans @class.

The above code translates to this HTML in the browser:

<input id="user" asp-for="Users.UserId" class="someCss" />

Noe
Tachado

You may have noticed that TagHelpers have a distinct font and color. This is because Visual Studio’s Editor knows
that it’s a TagHelper, and thus displays markups targeted by TagHelpers in a distinctive font. This way the developer
knows which is plain HTML and which elements are TagHelpers.

Apart from the distinctive font, Visual Studio provides rich IntelliSense for TagHelpers. For example, when you start
typing a label, the IntelliSense shows an “@” sign and angular brackets “<>” for the label element. The Angular
brackets mean that a TagHelper is available for the element.

As you type, the IntelliSense helps you write complete TagHelper code, displaying suggestions for attributes
belonging to that TagHelper.

2.1.3. IntelliSense and Display

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
08

Here’s the TagHelpers version:

In the source generated from the TagHelper form, you can see that asp-for is translated to the name attribute:

The generated source is similar to the form markup listed above. The TagHelpers version not only achieves our
model-binding goal, but it’s also similar enough to HTML markup that designers will understand what they’re
seeing.

Now that we understand how TagHelpers work, we can create our own TagHelpers targeting HTML elements. Since
the available set of TagHelpers is limited, it makes sense to create custom TagHelpers to solve complex problems.

We’ll start with the basics of creating a TagHelper and then walk through creating reusable TagHelpers, from simple
to complex.

3. Authoring Custom TagHelpers

TagHelpers can be created by inheriting the TagHelper class, which resides in the
Microsoft.AspNetCore.Razor.TagHelpers namespace. Inheriting from the TagHelper class allows us to override the
process method that controls the behavior of the TagHelper.

Here’s a simple custom TagHelper:

While including “TagHelper” in the name isn’t required, adding it is an accepted convention. The TagHelper logic
automatically detects and adjusts the class name accordingly. In this case, the TagHelper name would be translated
to custom-test.

In cases where the TagHelper name is different than the class name, the class should be decorated with
HtmlTargetElement.

The process method has two parameters.

• The context parameter contains information associated with the execution of current HTML tag and can be used
 to interact within nested TagHelpers for sharing context information.
• The output parameter contains a representation of the original source used to generate the HTML tag and
 content. The various properties of the output parameter—like PreContent, Content, and PostContent—help in
 rendering the final HTML.

The TagHelper class also has a method that helps with asynchronous execution of TagHelper processing.

3.1. TagHelper Basics

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
09

Attributes of a TagHelper are properties. In the example below, “PropertyName” is an attribute of the TagHelper
“Custom,” and will be used as:

To add a property to the class whose attribute name is different than the property name, it should be decorated with
HtmlAttributeName.

In this example, the TagHelper is also decorated with HtmlTargetElement attribute since the name of TagHelper element
is different than the class name.

Code:

3.2. TagHelper Attributes

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
10

<custom property-name="testValue"></custom>

The above TagHelper would be declared as:

<tag-name attribute-name="testValue"></tag-name>

We’ve seen how basic TagHelpers can be created, but when building complex TagHelpers, it’s best to break down
the logic into several TagHelpers that communicate with each other. This communication is handled by the context
parameter of the process method. The context parameter has an Items property that holds information for parent
and child TagHelpers.

Let’s take a simple example of Person and Location, where Location is the child TagHelper of Person. Here’s the
sample markup:

We consider two model classes:

The Person TagHelper class is defined below. Note how the context parameter is used to store the Person object’s
information. This Person object is then used by the child TagHelper Location to process location information. The
output parameter’s GetChildContentAsync() method helps to get the content of child TagHelper asynchronously.

3.3. Nested TagHelpers

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
11

<person age="20" name="ABC">
 <location city="NY" country="US" district="NDNY"></location>
</person>

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
12

The Location TagHelper class is defined below. This child TagHelper gets the information of shared Parent object
through the Context.Items collection:

The Person TagHelper class is defined below. Note how the context parameter is used to store the Person object’s
information. This Person object is then used by the child TagHelper Location to process location information. The
output parameter’s GetChildContentAsync() method helps to get the content of child TagHelper asynchronously.

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
13

Figure 1: A working Nested TagHelper with input elements inside a form

Figure 1 shows a working Nested TagHelper with input elements displaying Person and Location information inside a
form:

Figure 1: A working Nested TagHelper with input elements inside a form

The Location TagHelper class is defined below. This child TagHelper gets the information of shared Parent object
through the Context.Items collection:

3.4.1. Usage

3.4.2. Generated HTML

Figure 2: A simple citation TagHelper

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
14

The browser renders the TagHelper as normal HTML citation:

<p>ASP.NET Core TagHelpers</p>

<p citation>GrapeCity, inc.</p>

<p>ASP.NET Core TagHelpers</p>

<p><cite>GrapeCity, inc.</cite></p>

Now that we’ve learned the basics of creating a TagHelper, let’s look at some examples of TagHelpers targeting
HTML attributes.

In this example, we create a TagHelper for an HTML attribute that, when applied to an HTML paragraph, converts
the content to a citation. A citation begins with <cite> and ends with </cite> tags in HTML; we wish to use the
“citation” attribute in a paragraph to convert the content.

The logic of the process method would add a PreContent and PostContent to the rendered HTML wherever it finds
the citation attribute.

3.4. Creating a Simple TagHelper

Let’s consider a slightly more complex example of a form TagHelper. In this scenario, we wish to write just one line
of TagHelper code to generate a login form that not only binds the fields to a model, but also displays a form with a
nice Bootstrap style applied.

A form TagHelper with an email and password field would have three attributes defined:
 1.
 2.
 3.

We will define properties to effectively manage the binding.

The process method will include the required markup for the form and define properties applied to appropriate
attributes. (For example, the action property is set to action attribute, along with respective name attributes for
userid and password fields.)

Finally, the output sets the created HTML string in place of the TagHelper:

3.5. Creating a Login Form TagHelper

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
15

3.5.1. Usage

<login-form action="Home/LogOn" userId-binding="UserId"

password-binding="Password" ></login-form>

User ID
Password
An attribute to define the controller and action

Up to this point, we’ve worked with TagHelpers that target HTML elements and involve manipulation of HTML
attributes. Next we’ll consider advanced TagHelpers, targeting jQuery UI widgets and Bootstrap components that
handle both HTML and JavaScript.

Figure 3: A login form using TagHelpers

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
16

3.5.2. Rendered TagHelper

jQuery UI has an AutoComplete widget that can bind to a JavaScript array. In this example, we create a TagHelper
for the AutoComplete widget, whose minimum set of options are id and source.

This example also demonstrates a nested TagHelper: ItemsSourceBinderTagHelper is a child of AutoComplete
TagHelper.

The process method does the following:

1.
2.
3.

4.
5.

Initializes an input element with provided id and attaches a script.
This script initializes an AutoComplete jQuery UI widget.
For each item in itemssource or datasource, the child ItemsSourceBinder TagHelper adds an item to the source
option of AutoComplete.
The parent AutoComplete TagHelper processes the child TagHelper and appends its content to the output.
Finally, the output sets the HTML content for the TagHelper.

3.6. Creating a TagHelper for a jQuery UI Widget: AutoComplete

In this example, the two TagHelpers do not share information, but it’s easy to implement that through context
parameter. (Refer to the nested TagHelpers section.) Nesting can help when there are more attributes set for
AutoComplete, or when ItemsSource is more complex and has other attributes like service binding, sort
expressions, update, or delete attributes.

This example needs jQuery, jQueryUI and jQueryUI CSS to be referenced locally or via CDN inside the
view_Layout.cshtml.

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
17

3.6.1. Dependency

3.6.2. Usage

3.6.3. Generated HTML

<auto-complete id="langlist">

 <items-source source="Model.Lang.LanguageList"></items-source>

</auto-complete>

Figure 4: An AutoComplete TagHelper

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
18

Bootstrap has a very good carousel component. Here, we’ll consider creating a server-side TagHelper that displays
images from a list. Generally, writing Bootstrap carousel code would involve around twenty lines of code. We’ll
create a reusable TagHelper that does it in one line.

3.7. TagHelper for a Bootstrap Component: Carousel

3.6.4. Rendered AutoComplete TagHelper

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
19

This example needs Bootstrap referenced locally or via CDN inside the view_Layout.cshtml. Visual Studio
automatically adds Bootstrap support for the project.

3.7.1. Dependency

3.7.2. Usage

<carousel id="productImg" image-source="Model.ImageSource.ImageList"

interval="2000"/>

Figure 5: Carousel rendered with TagHelpers

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
20

We’ve seen how to create reusable TagHelpers based on HTML attributes and other libraries, but we don’t always
have the time and resources to build solutions involving complex logic and UI. Here, you might want to look into
easy-to-use third-party controls that offer the advantages of TagHelpers. We’ll cover that in the next section.

3.7.3. Generated HTML

3.7.4. Rendered Carousel

Figure 6: FlexGrid datagrid with grouping and columns

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
21

The ComponentOne ASP.NET MVC Edition controls have supported ASP.NET Core and TagHelpers since Beta 4.
All controls provide rich IntelliSense to write server-side code, which makes coding in Razor views a breeze; even
the scaffolders generate TagHelper code for all controls. The ASP.NET Core packages are available via the
GrapeCity NuGet and require minimal configuration to get started.

Let’s look at a few examples.

4. ComponentOne ASP.NET MVC Edition

FlexGrid for ASP.NET MVC is a powerful, full-featured grid with a small footprint that allows you to display, edit,
summarize, format, and print data in a tabular format. With built-in and extensible features like data mapping,
filtering, grouping, and virtualization, FlexGrid has a lot that your users need.

In this example, FlexGrid includes grouping and column definition. The items-source has the source-collection
attribute set to current model data. The items-source also supports AJAX data through URL binding.

4.1. FlexGrid

Noe
Texto escrito a máquina
Controls

Figure 7: FlexChart with multiple series, legends and chart types

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
22

FlexChart is an SVG-based chart with a simple API and powerful data visualization features. Included is every popular
chart type such as bar, column, line, area, scatter, spline, bubble, and financial. Customization options include built-in
labels, markers, headers, annotations and footers, and you can also mix chart types and show data across multiple
axes. Deep customization is possible using FlexChart’s ItemFormatters and palettes, and you have access to
individual data points using Hit Test.

This FlexChart depicts:

• Multiple series
• Chart types
• Legends

A FlexChart with multiple axes defined:

4.2. FlexChart

Figure 8: ListBox using a custom template

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
23

Next, let’s look at a ListBox with custom template defined. Notice how easy it is to define the element bindings. The
input controls can also be used inside a form.

4.3. ListBox

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
24

When multiple controls share the same data source, any change in the data affects all the controls. In this example,
FlexGrid and FlexChart are both bound to same “fruitSales” ItemsSource; any change to the data inside the grid
redraws the affected series.

4.4. Multiple Control Binding

Figure 9: FlexGrid with editable fields, conditional and custom formatting, and embedded images

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
25

So far in this whitepaper, we’ve looked at the basics of using TagHelpers; creating custom TagHelpers; and how
TagHelpers can be used in conjunction with third-party controls. Let’s pull together all we’ve learned into a single
application. The C1Finance app is designed to display a dashboard of financial information so users can immediately
assess stock market health and changes. The single-view page includes a FlexGrid, AutoComplete, and FlexChart
control.

The app was originally created using ASP.NET 4.0 and used the C1Studio MVC HtmlHelpers. (Link to download
available in the references.) We’ll look at each control and convert to TagHelpers in an ASP.NET Core app.

5. HtmlHelpers to TagHelpers: C1Finance
Application

The FlexGrid displays company and respective symbols, price changes and gain.

It includes:

• Editable checkboxes
• Conditional formatting to show percentage changes in stock prices
• Embedded image to represent a delete button
• Custom formatting to color and text for company name
• Embedded hyperlink in Symbol names that navigate to company stock information page on Yahoo

5.1. FlexGrid

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
26

Here’s the HtmlHelper code:

That piece of code makes sense to a developer, but for a designer, its meaning isn’t so apparent.
Further, the Symbol and Remove columns involve additional formatting handled in the grids itemFormatter method.
Ease in creating inline templates that handle complex formatting is great feature of TagHelpers. The TagHelper
version includes the complex formatting definition of Name, Symbol and Remove columns within the template itself,
rather than in the grid’s itemFormatter JavaScript method.

As you can see, the TagHelper code is concise, easy to write, and designer-friendly:

Figure 10: AutoComplete field

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
27

The AutoComplete feature allows users to easily add companies from a database to the current dashboard.

The AutoComplete binds to a collection of objects and enables searching the symbol, but it displays the actual
Company name. It has a custom CSS attached to it through the CssMatch property, which highlights any parts of
the content that match the search terms. Again, the HtmlHelper code functions well enough, but isn’t so readable.

Here’s the new TagHelper version of the AutoComplete control. This AutoComplete binds to data returned through
read-action-url.

5.2. AutoComplete

Figure 11: FlexChart with formatted X-Axis and selectable series

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
28

The FlexChart visualizes the rise and fall of stock prices over a given time span.

We’ll need to customize:

• Type of chart
• Name of the chart
• Formatted X-Axis
• Selectable series

The HtmlHelper code below sets the above features of FlexChart. A common method of setting values for complex
properties is through lambda expressions in HtmlHelpers. The Axis is a complex property in FlexChart, but you can
see how easy it is to set the same in TagHelpers.

5.3. FlexChart

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
29

Noe
Texto escrito a máquina
Now we’ll convert to TagHelpers. Since complex properties can be child TagHelpers, it’s easy to set these propertieswith TagHelpers. The chart could also bind to a Model, but this example shows how to get data from the actionusing read action URL. You get automatic IntelliSense for the enum properties of chart, and each property isself-explanatory.

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
30

TagHelpers are a helpful feature of ASP.NET Core MVC that solve HtmlHelper’s issues while simultaneously
providing new, powerful MVC features. In this paper, we looked at out-of-box TagHelpers and how Visual Studio
makes it easy to use them. They’re simple to understand, and we can even create our own TagHelpers.
Though they look like the Web Forms controls, they don’t carry the baggage of control lifecycles that marred the
Web Forms controls.

In future releases of ASP.NET Core, TagHelpers support may be extended to web pages, and it may be possible to
author TagHelpers in Visual Basic as well.

6. Conclusion

A publication | www.componentone.com | © 2016 GrapeCity, inc. All Rights Reserved. Back to Table of Contents
31

•

•

•

•

•

•

•

Download the white paper samples (zip):
http://our.componentone.com/wp-content/uploads/2016/08/TagHelpersTutorial.zip

Bootstrap Carousel documentation:
http://getbootstrap.com/javascript/#carousel

Learn more about ComponentOne Studio MVC Edition:
http://www.componentone.com/Studio/Platform/MVC

MVC Edition ASP.NET Core Control Explorer:
http://demos.componentone.com/ASPNET/5/MVCExplorer/

ASP.NET MVC C1Finance demo:
http://demos.componentone.com/aspnet/c1mvcfinance

ASP.NET Core MVC C1Finance demo:
http://demos.componentone.com/ASPNET/5/C1Finance/

7. References

 jQueryUI AutoComplete Widget documentation:
 https://jqueryui.com/autocomplete/

ASP.NET Core TagHelpers documentation:
https://docs.asp.net/en/latest/mvc/views/tag-helpers/intro.HTML

Noe
Texto escrito a máquina

Noe
Texto escrito a máquina
•

