
Vue.jsVue.js

A compArison of the top JAvAscript frAmeworks AvAilAble

How to Choose the
Best JavaScript
Framework for Your Team

2a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved.

About the Author
Christian Gaetano is a full stack web developer from
Pittsburgh, Pennsylvania. Transitioning to the technology
sector after graduating from Duquesne University with
a biochemistry degree, he worked as a freelance web
developer, creating dozens of personal and corporate
websites and the Node.js package Rediserve.

http://wijmo.com

3a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved.

Table of Contents 3

Preface: About this E-book and Why it Exists 4
 Part 1
a Quick look at javascript 7

 1.1. About JavaScript as a Language 7

 1.2. What is a JavaScript Framework? 8

 1.3. MVC and Other Software Design Patterns 8

 1.4. So What Makes the Web So Special? 12

 1.5. Other Utilities: AJAX and More 13

 1.6. Recap: General Pros and Cons of Framework Use 13

Part 2
examining popular Frameworks 15

 2.1. Our Base Example 15

 2.2. Create a Gauge using Pure JavaScript 16

 2.3. AngularJS: The Choice for Design-Focused Teams 17

 Working with Dynamic Data

 2.4. Angular: When You’re Looking for Full Team Workflow 19

 2.5. React.js: You Have a Need for Speed 24

 2.6. Vue.js: A Pared-Down Framework for the Minimalist 28

 2.7. Knockout: Build a Plug-In with Data Binding 30

 2.8. Frameworks in Review 33

Part 3
the spec method: select the best 34
 Framework for your team
 3.1. SPECing Out Your App 34

 3.2. How the SPEC Method Works 36

Part 4
migrating to a new Framework 40

 4.1. The Biggest Hurdle is Team Culture 40

 4.2. Give It a Month 40
 4.3. Third-Party Libraries Save Time 41

 4.4. The X Factor: Do You Like It? 41

Part 5
conclusion: you can build an interactive web 42
 app without a framework. but why would you?

APPENDIX A: The Rich History of JavaScript 43

APPENDIX B: Resources 45

Acknowledgments 45

Table of contents

http://wijmo.com
http://React.js
http://Vue.js

4a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved.

About this E-book
and why it exists

So why do you need to know about JavaScript
frameworks?

1. within the last 12 months alone,
javascript Framework usaGe has
exploded astronomically.
Using a framework when starting a new web project
is the norm. From the smallest static websites to the
largest stateful web apps, frameworks are used across
the board for their unbeatable utility and software
design principles. The recent explosion in popularity has
diversified the features offered in the most commonly
used frameworks. As such, picking the right framework
for your project requires a deep knowledge of all available
frameworks and how they compare.

2. application development has
always been a Fast-movinG Field.
The risks associated with development are low compared
to the potential rewards, so developers feel freer to
test new, sometimes radically different, features in
the software they produce. This production speed is
amplified even further in the modern web development
world, where updates are fetched simply by specifying a
new CDN URL or running npm install.

In addition, web application development standards
are shifting. While it’s true that the HTML5, CSS3,
and JavaScript ES2015 specifications have been
standardized for some time now, the phenomenon of
feature-based iteration has led to rapid change. Many
analysts and tech company executives predict that
web standards will adopt an official feature-based
update schedule, allowing them to continue to evolve
rapidly.1 Point being: even if you’re already using a
JavaScript framework, now (and every minute after
now) is a good time to re-evaluate your framework
choice. For better or worse, web standards are going to
continue changing quickly, and frameworks will change
with them.

Overall, this e-book has a singular, focused goal: to help you decide which JavaScript framework
works best for you and your team by providing a technical, current, and informative summary of major
JavaScript “MVC” frameworks available in 2018.

Picking the right
framework for your project

requires a deep knowledge of all
the available frameworks and

how they compare.

http://wijmo.com

5a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved.

3. keepinG up with the evolvinG web
landscape these days is tough.
This e-book is the culmination of a lot of research on the
current state of JavaScript frameworks. Whether you’re
just trying to support a variety of developers (like me!) or
embarking on a new web project, it never hurts to have a
quick, accessible guide that summarizes your options.

siGniFicance by association:
top companies love Frameworks
Some of the top JavaScript frameworks discussed in this
e-book are made by Google and Facebook. From Forbes
to Airbnb, companies large and small use frameworks to
revolutionize their web development workflows. We’ll look
more into why adoption has been so widespread later, but

overall, it comes down to enabling novel user experiences
and improving development workflows. The immediate
takeaway is basic, but extremely powerful: if successful
companies large and small are using JavaScript
frameworks extensively, they must offer some benefit.

Before you grab a pot of your favorite coffee and dive in,
take a look at the handy reading guide on the next page.
This e-book is intended for everyone, but depending on
your experience, you may want to start at a different
point.

1 You Don’t Know JS: Up & Going by Kyle Simpson. http://shop.

oreilly.com/product/0636920039303.do

http://wijmo.com
http://shop.oreilly.com
http://shop.oreilly.com
http://0636920039303.do

6a publication | GRAPECITY.COM| © 2018 Grapecity, inc. all riGhts reserved.

web Development experience

Beginner
... the beginning! You should be able to learn the basics as you go, and if
you’re very new, read the appendix on JavaScript’s history first. Don’t be
intimidated: this book focuses more on software design than JavaScript
syntax. (I think design can be much more fun!)

Go to Part 2>

Go to Part 3>

Go to Part 1>

... framework overviews. Skip all the JavaScript history and start at the
point where we look at frameworks and their latest features.

...fitting a framework. This section talks about how to decide which
framework is right for your projects. Even if you’re already familiar with the
latest and greatest in JavaScript frameworks, the concluding sections of
the e-book may be useful in helping you start new projects utilizing them.

interMediate
You know JavaScript and some

front-end development.

exPert
You’re already up-to-date on

JavaScript frameworks.

try stArting At...

Reading Guide

http://wijmo.com

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 7

part 1
a Quick look at javascript
1.1.
About Javascript
as a language

If you haven’t used JavaScript yet, don’t fear! This is
the best and most exciting time to learn this beautiful,
dazzling, bewildering language. The reason this book exists
is because of the booming web development field, and
right now the focus of that field is JavaScript. Relatively
recent developments like the release of the Node.js server
platform, rich updates to browser APIs, and codification of
new JavaScript language specifications have established
JavaScript as a viable option for programming entire
applications, even native ones! And, of course, all these
leaps forward have ultimately enabled the production of the
frameworks we’ll look at in the pages ahead.

Overall, JavaScript is something of an anomaly among
programming languages. Syntactically, JavaScript
resembles a procedural language like C more than an
object-oriented platform like Java. (Read more about the
etymology in Appendix A). When you look a little deeper,
you’ll realize that JavaScript often doesn’t act like any
other programming language. From the precedence of
scope to the behavior of “falsy” values, you might find
yourself surprised during your first few run-ins with
JavaScript.

Until very recently, many of the programming patterns
used in JavaScript have been used because they’ve been
proven to work well, rather than because of enforcement
by a standard. This has had both positive and negative
impacts on the language, but this flexibility has enabled
quick adoption and unique usage of JavaScript.

JavaScript’s inherent flexibility derives from its most
significant requirement: you can run it in almost any
environment. From the beginning, developers have
wrestled JavaScript into places where no programming
language had gone before. At the most fundamental
level, JavaScript’s primary environment is a browser, and
there are at least three different frequently-used browser
environments to consider.

Thus, JavaScript’s flexibility and uniqueness come from
necessity, and learning to work with its quirks rather than
trying to work around them is your best course of action.
At the end of the day, these “quirks” typically turn out to
be very powerful features if you know how to use them to
your advantage.

how to
write
javascript

if you want to learn all the
nuances of javascript i highly
recommend kyle simpson’s
“you don’t know js” series
of books. javascript is a
procedural-style language
with lots of quirky behaviors
that developers leverage to
create powerful and elegant
solutions on web, mobile and
desktop. Frameworks maximize
this leverage and typically
work on all the platforms i just
mentioned, and that’s why
they’re so powerful. if you want
to learn a bit about the history
and current state of javascript,
check out Appendix A.

http://wijmo.com
http://Node.js

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 8

1.2.
what is a Javascript
framework?

When I say “JavaScript framework,” I’m referring to a
front-end “MVC” framework written in and designed to be
used with JavaScript.

A warning: MVC can seem like a rather rigid term. Based
on its original definition, not all JavaScript frameworks
use the MVC software design pattern. Heck, maybe
none of them do! MVC is more of a philosophy than a
rigid pattern for writing code. Keep in mind that the
overarching philosophy for each is to implement the
principle of separation of concerns as much as possible.
Don’t get bogged down in the technical jargon; stay zen-
like: JavaScript frameworks are all about separating out
your concerns, man.

1.3.
mvc and other software
Design patterns

Software designed with the MVC pattern is said to have
three main parts: a model, a view, and a controller. Many
variations of this exact pattern exist, and frameworks use all
kinds of different “parts.” You could probably describe most
JavaScript frameworks as having these parts, but rather
than try to pin down exact implementations right now, just
try to understand the concept.

the model
In MVC software, the model is a standalone unit that
represents the data your application uses. If you’re building
an application that allows city residents to register their pets
online, for example, you might have a model for dogs and a
model for cats:

The model of an application is extremely important
because it defines what the application will be able
to do by dictating what information will be storable
and retrievable. In addition, the model is completely
independent from the other parts of the application. Other
parts can interact with the model, but the model explicitly
puts forth rules for such interaction. This is essential, as
it allows you to abstract data management away from the
user-facing parts of the app.

the view
The view of an application is the part with which users
and developers are most familiar. The view is simply a
compartment for holding controls and other UI elements
that allow users to interact with your application. Many
platforms refer to views as “forms” or “pages.”

JavaScript frameworks
are all about separating

out your concerns.

http://wijmo.com

9a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved.

Fig 1. A simplistic depiction of the components of a typical MVC software
architecture along with the actions associated with each.

View Controller Model

s o u r c e u p D At e u p D At e n o t i f y

u s e r A c t i o n s c o m m i t u p D At e

http://wijmo.com

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 10

Specifically, you can think of views as HTML pages on
the web or XAML forms on Windows. Front-end code
can be used to directly modify the view (e.g. JavaScript
animations on the web), but in many cases, we should
connect the view to some other component and allow it
to do the heavy lifting.

This is really where the reason for MVC frameworks
reveals itself. Understanding the how of frameworks
requires knowledge of all their parts, but understanding
why only requires a brief examination of an app’s view.
Most developers have experienced the tendency of views
to quickly become time-consuming components for a
given project. When boiled down to the basics, software
design reveals that the view is only needed to (1) receive
input from the user and (2) show output to the user.
From the design perspective, several other important
factors make these user experiences enjoyable. From the
development perspective, however, the view presents an
interesting paradox. It may be a portal through which we
can directly access the user, but how can this access be
leveraged and allow designers and writers to work their
magic freely?

Until the dawn of MVC frameworks, developers had a
tough time tackling this issue. Many developers had no
choice but to combine view markup with data access
logic and other computations. As we all know, this leads
to an unresponsive and unpleasant experience for the
user. Luckily, MVC (and similar) frameworks solve this
issue by abstracting away code that deals with data
manipulation and other calculation. We’ve already seen
how the model contributes to the solution by giving us
another place to worry about data, but now let’s check
out the controller’s role in making our lives easier.
(Computers do live to serve us, right? Right...?)

the controller
If we think about an MVC application as analogous to a
human brain, the model would be the brain’s memories, the
view would be the senses and the voice (for communicating
with the outside world), and the controller would be
everything else. The controller of an application takes many
different forms across various frameworks, but its purpose
is universal: masterminding the operations of an app.

We’ll talk about how controllers are implemented for each
of the frameworks we cover. In general, consider a webpage
with some JavaScript code loaded from a separate file.
Specifically, think of an online “checkout” page for an
e-commerce store. Even if we separate out the code for
the model and the view into their own files, we still need
additional logic to handle the checkout.

Check out this example model for a purchase made through
the online store:

Model StorePurchase {
 string PurchaseId;
 string ProductId[];
 string CustomerId;
 number TotalCost;
 string PaymentMethod;
 boolean Coupon;
}

Our model is ready to store information about the
purchase. We can assume the view is set up, too, with
some form elements for the user to put in their name,
payment information, etc. Let’s assume that all we need
to do to charge the customer is call an API like this:

http://wijmo.com

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 11

Easy, isn’t it? Even when those things are done for us,
we still need a way to handle specific events in the view
and coordinate all the logic. For example, what if we want
to accept a coupon code from the customer? Even if
those codes are stored in a database, we need a place to
check and apply them to the final price. What if we want
to automatically calculate discounts? Even if we’re not
interested in offering features (we just want to get the
customer out the door), we need a place to charge the
customer and only store the purchase if the charge goes
through. That’s where the controller comes in.

Generally, the controller will be linked to the view of an
application so that it can handle events raised there,
get input from the user, and ultimately display some
response. For example, our controller could look
something like this:

The controller could also hold code for handling
automatic discounts and other logic. The important
thing to recognize here is that the controller is unlinked
from the view—it is not an essential component. Even
if we completely removed the controller, the user could
still see the view as it would appear with a controller.
Additionally, our data, represented by the model, is also
represented independent of the controller. Views and

models willingly (and specifically) expose properties and
methods that the controller should be able to access,
and they allow it to do whatever it chooses with that
information.

In general, this is a one-way street. For example, the
controller can’t tell the view when it’s time to check out.
The view can, however, provide a checkoutButtonClicked
event to which the controller can subscribe and respond
accordingly. Typically, the controller can also provide
access to properties and methods that the view can
access if it so chooses. The point is, the view has control
over information flow.

That’s the classic, original way of thinking that led to
the development of frameworks. Many applications are
still designed with the MVC pattern, but several popular
variations exist. In fact, some of the frameworks we will
discuss lend themselves more to other software design
patterns.

variations on Design patterns
The important thing to note here is that these patterns
provide the developer with the tools they need to
separate concerns, and they allow data to be considered
independently of view layouts. They allow visual design to
be decoupled from complex data processing. Some of the
variations among patterns exist because some of the MVC
components are unnecessary or can be used in different
ways. For example, some frameworks emphasize a pattern
that doesn’t even have a controller. They package code
back into the view but provide tools for doing so without
blocking the UI thread. Other implementations take a
two-way data binding approach, allowing the controller
to directly manipulate and send data to the view. This
approach allows the view and controller to be separated
conceptually but connected in practice.

http://wijmo.com

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 12

1.4.
so what makes the web so special?

The web varies from native application development quite
a bit, and as such has always faced its own set of unique
challenges. Aside from separating concerns, MVC and
similar frameworks seek to simplify app development on
the web by making it easier to manage state and create
dynamic views.

Historically, it’s been difficult to maintain state on a
webpage, especially while dynamically updating elements
in the view. In the past, modifying a view element has
required reloading the webpage and, subsequently, losing
state. Have you ever noticed your screen flashing while
filling out a form on an older website? This is likely due to
the “clunkiness” of handling state on the web.

Luckily, modern frameworks focus on using JavaScript
to dynamically alter elements in the view by directly
modifying the document object model (DOM). These
frameworks abstract away the tough, tedious job of
modifying the DOM directly. They provide developers with
clear, efficient syntax for accessing utilities that make
building dynamic apps on the web a breeze.

Here’s a simple React.js demo showing how a developer
can modify an existing a string and display it in the view:

The code above displays this HTML element on the page:

That’s how frameworks allow for easy manipulation of the
DOM based on values “calculated” in code.

http://wijmo.com
http://React.js

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 13

1.5.
other utilities: AJAx and more

In addition to simplifying software design and providing
utilities for creating a dynamic view, JavaScript MVC
frameworks typically provide other useful utilities. For
example, almost all frameworks provide a built-in method
for making AJAX calls to asynchronously retrieve data
from APIs. Frameworks also provide engines (which
can be overridden) for manually manipulating the DOM.
Many frameworks offer utilities for interfacing with
modern browsers via new APIs, such as the local storage
programming interface or web sockets.

Let’s take one last look at the pros and cons of using a
JavaScript framework.

1.6.
recap: general pros and cons of framework
use

If some of these items seem unclear, read Appendix A,
where TypeScript, ECMAScript, etc., are covered in detail.

Workflow

•	 Command	line	interfaces	(CLIs)	and	project	file
 management

•	 Deployment	utilities

•	 Modular,	so	you	can	control	how	much	weight	
 frameworks add to your project

•	 Built-in	shims	and	polyfills	for	older	browser	support

•	 Easily	configurable	unit	testing

•	 Plugin	support

•	 UI	libraries:	One	thing	I	didn’t	get	to	talk	about	much	
 yet is the usefulness of UI libraries. One of our
 products, Wijmo, is a UI library that supports every
 JavaScript framework discussed in this e-book.
 Loading UI libraries into a framework project reduces
 developer workload and allows the workflow to focus
 on implementing new features rather than debugging
 UI controls.

•	 Automatic	form	logic	handling

•	 Embedded	media

•	 Content	management	and	blogging

•	 Support	for	other	JavaScript	“flavors”

•	 TypeScript

•	 ES2015+

•	 CoffeeScript

•	 Elm

•	 Clojure

pros

http://wijmo.com

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 14

Performance

•	 More	concise	handling	of	complex	UI	functions	like	
 animation provides a smoother UX

•	 Non-blocking	data	operations	via	view-model	binding

•	 Modularity	means	you	can	load	only	utilities	you	need

•	 Popularity	on	web	means	users	may	have	CDN	libraries	
 pre-cached

•	 Some	frameworks	provide	utilities	for	using	web	
 workers to improve performance

Cons

•	 Large	libraries	bring	up	bandwidth	concerns	-	think	
 the “next billion users”

•	 Client-side	DOM	manipulation	dependent	on	client	
 hardware

•	 Fun,	useful	utilities	specific	to	each	framework,	such	as	
 animations, page transitions, and routing

cons

cons

•	 Learning	curve	requires	developers	to	learn	ins	and	
 outs of new workflows

•	 Tooling	and	server	setup	requires	time,	and	
 sometimes money

pros

Features

•	 Dynamic views! This is the tenet of all JavaScript frame
 works— they facilitate the creation of stateful, dynamic
 views

•	 Abstract	data	modeling	and	binding	allows	for	separation	
 of concerns

pros

http://wijmo.com

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 15

part 2
examining popular Frameworks
2.1.
our base example

Before we get into the frameworks, let’s look at how I
use Wijmo to compare the implementation of different
frameworks. Most JavaScript frameworks support a wide
array of plugins, many of which are libraries of UI controls.
Since the goal of frameworks is to simplify working with a
dynamic view, most frameworks differ in how they interact
with the view.

For this reason, UI libraries and their controls are one of
the most useful and obvious examples for comparing how
different frameworks work. Using a library like Wijmo is
also a best practice because it extends the “separation of
concerns” principle deeper into any project. Ideally, the UI
library you choose should be independent of any framework
so that if you do have to switch frameworks at some point,
the process will be much easier.

In addition, Wijmo is the only UI framework that ships with
support for AngularJS, Angular, React, Vue.js (1 and 2)
and Knockout, all of which will be discussed in this e-book.
Wijmo is a natural choice if you’re looking for a fair platform
to compare framework implementation. I can be cheap
at times, but I’m not using Wijmo just because I have free
access to it.

If you’d like to use Wijmo to follow along, you can download a
free trial at any time at https://www.grapecity.com/en/
download/wijmo-enterprise.

To see how each framework handles the fundamental tasks
of building a web app, we’ll look at how frameworks can
interact with the simple Wijmo gauge control.

I can’t stress enough that this example only demonstrates
the syntactical differences between frameworks. The
most important differences between frameworks are
conceptual, and those examples would require building
entire applications. In addition, not all frameworks are
designed equally: some frameworks weren’t really
designed to handle jobs that other frameworks solve
brilliantly. I’ll focus on the conceptual differences between
frameworks so that you can choose a framework for your
project.

2. A simple layout showing a Wijmo linear gauge control,
radial gauge control, and number input all bound to the same
data value. We’ll look at this example for each framework.

http://wijmo.com
http://React.js
http://wijmo.com/download.

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 16

2.2.
integrate a gauge using pure Javascript

Let’s prepare a Wijmo gauge control with a number input
that adjusts it.

HTML (view)

JavaScript (controller)

As you can see, the DOM must be accessed manually and
the Wijmo controls initialized through them. We must also
override the valueChanged event of the number input to
manually change the gauge values—there is no true data
binding.

Let’s see how frameworks can simplify things.

http://wijmo.com

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 17

2.3.
AngularJs: the choice for Design-focused
teams working with Dynamic Data

2.3.1.
premise and main concepts

premise: HTML is intrinsically flawed in that it is not
designed to represent dynamic views. The solution to
this problem is to extend HTML to support dynamic web
content.

AngularJS is one of the most popular JavaScript
frameworks, and it was also one of the first. Google
released AngularJS in 2010, and it has since been joined
by its younger (hipper, edgier) sibling, Angular (version
2+).	While	some	would	claim	that	AngularJS	has	been	
replaced by Angular, the more accurate view is that the
two happily coexist. As you’ll see, AngularJS and Angular
work very differently, and AngularJS is still being used for
new projects.

the focus of AngularJs has always been “fixing”
html to better support data binding and
dynamically updating the view. Since the view is
flawed, the best place to implement a fix is in the
view itself. This becomes apparent when viewing the
AngularJS syntax, as it relies almost entirely on markup
directives. For example, AngularJS specifies that every
application should have a controller, but even the
controller is referenced in the application via a directive
in the view. Therefore, model and controller constructs in
AngularJS are a result of supporting the extended HTML
vocabulary.

Despite AngularJS’s focus on fixing HTML, there is
no imperative manipulation of the DOM: one can
choose which parts of their view should be handled
by AngularJS by declaring them with the Angular
directives. Furthermore, any code from the controller
that interacts with the view must be bubbled up through
global variables that Angular maintains (namely, $scope).
Overall, this methodology emphasizes Angular’s focus
on improving and extending current tools rather than
replacing them.

2.3.2.
use cases

Because of its hyperfocus on HTML, AngularJS is best
used in applications that have a single fundamental
need for creating a dynamic view. AngularJS provides
extremely effective functionality for building a dynamic
view while remaining lightweight and unobtrusive. This is
true both for the end user and the developer.

Thus, AngularJS is a great option for teams that want
to stay agile and lightweight while adding new features
and facilitating dynamic web form development. The
learning curve for developers who already know HTML
and JavaScript is low, so teams don’t need to dedicate
much time to transitioning their systems to AngularJS.
I personally think that AngularJS is a great option for
teams managing existing projects that focus on design
and copy but now have the requirement of working with

angularJS is a great option
for teams managing existing

projects that focus on design and copy
but now have the requirement of

working with dynamic data.

Another strong suit of AngularJS
is its versatility. Because of how
it works, AngularJS can usually
be easily mixed in with other
frameworks and libraries.

angularjs in the
wild
Too many sites to count!

WolframAlpha, NBC, Walgreens,

and Intel all use AngularJS. Check

out the full, official list:

https://www.madewithangular.com/

http://wijmo.com
https://www.madewithangular.com

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 18

Feature Recap:

anGularJS
lightweight and fast

mvc architecture

two-way data binding

templates

directives

expressions

Filters

user-controlled dom
manipulation

dom scope

deep linking

dependency injection

2.3.3.
migrate to AngularJs from pure Js

the gauge example, rewritten
Here’s the AngularJS version of the Wijmo gauge example:

html (view)

Javascript (controller)

As you can see, the migration from pure JS to AngularJS
isn’t too complicated. In fact, most of the code is taken
away from the JavaScript altogether and moved to the
markup. In a nutshell, that’s the point of a framework.

Wijmo automatically provides special Angular directives
for its components, allowing them to be easily loaded
from the markup. All that’s left to do is hook up the app to
the controller’s JavaScript and provide a data object that
the controls can use (called props) to store and retrieve
data. (Note that $scope is used to make props accessi-
ble in the view.) We don’t even have to handle any events
manually this time—AngularJS automatically handles
data changes for us—the epitome of “data binding”.

The main changes that you’d need to make when mov-
ing your pure JS project to AngularJS are enrolling your
HTML elements in data binding and refactoring view logic
to use $scope.

http://wijmo.com

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 19

2.4.
Angular: when you’re looking for
full team workflow

2.4.1.
premise and main concepts

If AngularJS is the lightweight champion of the
framework arena, Angular is its beefier, heavyweight
counterpart. Even though Angular retains some of the
core philosophies of AngularJS, the differences are
substantial.

premise: Many companies are choosing to replace native
apps with web apps. To ease that transition, the mindset
and tooling that has been a hallmark of the native app
development sphere should be available for the web.
This gap in the development workflow transition can be
filled by providing a full-fledged architecture for building
responsive apps on the web.

That premise makes Angular completely different from its
older sibling. It’s also why AngularJS is still actively used
and maintained. Angular is not meant for everyone.

fundamentally, Angular is about providing a full-
featured solution. Rather than acting as a lightweight
framework that you can incorporate into your app,
Angular is designed to be a complete workflow solution
for creating and maintaining your app from the beginning.
One of the most prominent features of Angular is the
availability of a CLI. This isn’t unique among frameworks,
but it is important. The CLI allows you to quickly generate
a file structure, package configuration, and other tedious
elements for a new project. The CLI works with you
throughout the project lifecycle, so you can continually

add, remove, and modify different components in your
application from the command line. This typifies the
“holistic solution” approach taken by Angular.

By default, Angular ships with much more going on under
the hood. Where AngularJS focused on providing a simple
linkage between different components of an app, Angular
strives to provide an entire system that you can use to
handle events, bind data, and more.

The holistic approach’s major advantages involve
abstracting away performance and overall speed
concerns. While you still manage bandwidth and resource
delivery on your own, Angular automatically handles the
job of optimizing code for working with large datasets
and managing the DOM. These technologies still have
intrinsic limitations, but the Angular API utilizes the latest
and greatest JavaScript features to run your code as
efficiently as possible.

Angular also departs from AngularJS in terms of how
the view is built and how view interactions are handled.
Remember, AngularJS focuses on “fixing” HTML by
extending it. Angular would probably agree with that
sentiment, but it provides a different route to a “fix.” In
Angular, views are built as a collection of templates. You
can think of a template as a custom HTML element in
some ways. Rather than declaring a custom directive and
mutating it via attributes (as in AngularJS), templates
typically contain their own code, which allows them to
mutate the view directly. When templates also contain
their own logic, they are considered Angular components.
(As an example, the Wijmo controls are provided as
Angular components via an interop module.)

This difference between templates and components
is significant, and components are one of the most
powerful features of Angular. Rather than declaring some

http://wijmo.com

20a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved.

custom directive and then handling its functions in the
general app controller, Angular compartmentalizes each
component’s logic. This not only makes working in a team
setting easier, but also provides performance advantages
since you can selectively load the code that is needed on
a page at any given time. This takes some getting used
to, but if you’re coming from native programming it’s
probably familiar. Ever worked with a custom user control
in .NET or a custom component in Android development?
Components in Angular work on the same premise.
Oh, and one more thing: of course they allow inheritance!
Does it sound like JavaScript is getting kind of object-
oriented in the Angular context? You haven’t heard the
half of it yet.

2.4.2.
typescript and Angular

TypeScript is a programming language developed and
maintained by Microsoft, but it’s a little odd in the way
it works in the web field. Most programming languages
are either compiled down into more low-level syntax or
directly interpreted by an engine. Historically, on the web,
the only major programming language for the client has
been JavaScript, and JavaScript has used a combination
of compilation and interpretation to run. TypeScript, on
the other hand, is compiled into JavaScript which is then
compiled/interpreted as usual.

if typescript ultimately turns into Javascript,
what’s the point?

it’s all in the name: TypeScript is about types. Every
developer knows a major pain point of JavaScript is its
typing mechanism. In JavaScript, values have types but
variables do not. Variables are simply containers for
values, so the value (and its type!) associated with any

given variable can change freely. TypeScript’s original
aim was to address this issue head-on by designing
a JavaScript-like language with type enforcement for
variables.

In TypeScript, it’s possible to create function definitions
which return a specific type and take parameters with
specific types. This approach allows for applications to
grow larger, quicker, while also being properly maintained.
(I feel that JavaScript’s typing strategy is powerful when
used correctly, but that’s a topic for another e-book.)

In addition to adding type enforcement to code,
TypeScript also provides many other patterns seen in the
OOP world, such as inheritance and class constructors.
Furthermore, since TypeScript compiles into JavaScript,
it takes the guesswork out of JavaScript compatibility
for developers and their workflows. For example, three
development teams can target three different browser
platforms while working on the same TypeScript
codebase. When it comes time to package up the
distributable files, each team can specify a JavaScript
version it needs, and the TypeScript compiles to that
version. There are caveats, but TypeScript will also help
you work through those.

where does typescript fit in with Angular?
By definition, TypeScript and Angular are not linked,
and neither requires the other. But Angular’s strategies
lend themselves to OOP patterns, especially typing
and inheritance. For example, it’s possible to write one
Angular component that inherits from another, and
TypeScript naturally handles this paradigm. JavaScript
can handle the same structure, but the meaning gets
muddled, and the code becomes harder to understand.

author’s
note

typescript is not required when

using angular. you can still

write angular apps using good

ol’ javascript! but many people

now consider angular and

typescript synonymous, so we

should talk about it.

http://wijmo.com

21a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved.

2.4.3.
use cases

Angular is most suited to large-scale enterprises looking
to create new web apps. Whether these apps replace
old, native versions or provide some new functionality,
Angular is ready to take on the job. The availability of
TypeScript and the inclusion of major workflow tools
makes it easy for even the largest development teams to
manage immense codebases. By designing its base units
as components, Angular also allows for development
efforts to become highly compartmentalized.

Additionally, Angular’s comprehensive form templating
sets it apart in the framework world. This, combined with
the workflow advantages, has propelled Angular to the
forefront of frameworks chosen by business enterprises.
When it comes to building internal apps that require lots
of user input, Angular does the job best.

Even though Angular facilitates moving away from old
native applications, it provides officially-supported
plugins that can be used to deploy an Angular app as
a native desktop or mobile application. While not as
feature-rich as the web counterpart, the availability of
native deployment is appealing to many organizations
looking to future-proof their apps.

overall, i think Angular can be epitomized as a
developer platform rather than a simple coding tool.

angular in the wild
Companies like Thomson Reuters and Tesla are using
Angular to serve their customers and manage their own
operations. Here at GrapeCity, we’ve rewritten our entire
Wijmo component suite in TypeScript to allow optimal
integration with Angular and easy maintenance going
forward.

If you’d like to check out a more comprehensive list of
companies using Angular, check out Google’s official list:
https://www.madewithangular.com/.

2.4.4.
migrate to Angular from pure Js

the gauge example, rewritten. Here’s a simple Angular
version of the Wijmo gauge example:

HtML (app.html - view)

http://wijmo.com
https://www.madewithangular.com
http://app.html

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 22

typeScript (app.ts - controller)

author’s
note

this example does not use

any separate typescript

component files. to further

customize each of the

displayed controls, you could

create *.ts files for each of the

components (the two gauges

and one number input) and

customize them there before

loading them in the main app

component.

http://wijmo.com
http://app.ts

23a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved.

If you’re coming from a pure JS environment, the most
shocking change in Angular is the focus on components
and objects. JavaScript is highly procedural in nature, so
any OOP language seems foreign when viewed through
that lens. If you opt to avoid TypeScript, using JavaScript
to interact with Angular components will get confusing at
times. And even if you do move to TypeScript, making the
leap to a new programming language is likely the most
difficult factor you’ll face.

You’ll also need to refactor code and markup so that
they can be compartmentalized into components. This
ultimately simplifies the development of your app and
provides built-in performance improvements.

In the end, Angular is a much easier framework to choose
if you’re starting work on a new app, but fitting it around

the codebase of a preexisting app can be much more
difficult. If you need to add some dynamic views to an
old app, I suggest using AngularJS. If you need to add so
many new features that starting from scratch is sensible,
then Angular is a viable option.

If you opt for Angular, stick with TypeScript even when it
seems too different from the classical method of writing
code for the web. Angular’s and TypeScript’s first-class
integration with IDEs like Visual Studio make learning
these new methodologies much easier, and the benefits
justify the change management. If you’re building an
enterprise-level app staffed by very large teams, Angular
is a natural choice.

Feature Recap:

anGular
TypeScript support offers OOP
patterns that compile into
JavaScript

Plugins offer native app
deployment

New browser and backend APIs
supported out-of-the-box: web
workers, multiple server types

Code splitting via components
and built-in view routing for
multi-page apps

CLI for creating project structure

Highly compartmentalized

Full development platforms
offered including snippets,
autocomplete, unit testing,
animation APIs, and more

typeScript (app.ts - controller) continued from prev. page

http://wijmo.com
http://app.ts

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 24

2.5.
react: you have a need for speed

2.5.1.
premise and main concepts

premise: In the pure JS days of yore, creating a dynamic
view was made possible only by manually mutating
the DOM via JavaScript. This approach works in many
environments, but it’s confusing, indirect, and makes it
difficult to maintain state or bind data. The solution to
this fundamental problem is to combine DOM markup
with JavaScript logic in a single easily-generated and
maintained package.

Based on various surveys and metrics analyses, React
is currently the most popular front-end JavaScript
framework. React owes its success to its subtle learning
curve and easy integration. React is a highly pluggable
framework that includes fundamental features of a
JavaScript framework while staying very lightweight.

React is so lightweight, in fact, that it only focuses on
the view of an application, leaving data handling to the
developer. On the enterprise level, this can add time
to development and may be a disadvantage. Overall,
however, react offers the most pluggability and
versatility of any framework, and it helps you stay
true to the original focus of frameworks: dynamic
views.

Like Angular, React’s focus is on highly compartment-
alized components, but that’s where the similarity ends.
React components are more lightweight and true to
JavaScript than those in Angular. React doesn’t provide
a whole new programming language; instead, it extends
JavaScript to make authoring components easier.

React uses a syntax known as JSX that essentially allows
HTML to exist as a JavaScript variable. For example, the
following is valid JSX:

React places some special rules and restrictions on what
constitutes valid JSX, but the main point is that HTML can
live within JavaScript in React. This is the tenet of React,
and it’s the pinnacle of compartmentalization in the web
world. Each piece of the view can be separated out as
a component, and those components simultaneously
contain both the markup and the JavaScript logic
necessary to display and operate as expected. React’s
JSX components can even contain style information
saved as JavaScript objects! And in React, everything
is a component. Each control can be represented as
a component; even containers on the page can be
components. The app is a component. Bottom line:
components are pretty important in React.

Since everything is a component in React, how do
components communicate with one another or maintain
state? One word: inheritance. Through its own defined
hierarchical system, React allows components to inherit
from one another, although “inheritance” is a slightly
altered concept.

Typically, one component will import another
component’s definition, and then render that imported
component within its render() function, thus allowing
two-way communication between React components.
Let’s dig deeper by understanding the difference between
state and props in React.

http://wijmo.com
http://React.js
http://React.js
http://React.js
http://React.js
http://React.js

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 25

Props are object properties that are passed to a
component via attributes, and they can be accessed on
an object located at this.props. For example, suppose
you imported a component called CustomButton into
your React component (called CustomForm), and
rendered it like so:

In that example, the CustomButton component now
has access to the ‘reaction’ property via this.props.
reaction.

A similar system can be used for events and event
handlers. For example, imagine a parent component
defining an event handler function and then passing a
reference to that function to the child component as a
prop. The child component could then set the function
reference as an event handler.

State works very similarly on the component level in
React, but the React framework handles it differently in
the background. A stateful component is indicated by
defining a getInitialState() function on a component.
This function should always return an object containing
properties that will define the component’s starting
state. Then, from within the same component, state
can be modified using this.setState(). One interesting
facet of handling state in React is that state items can be
modified individually, even though an object must always
be passed or returned as the state parameter. React
automatically aligns object property names and updates
the supplied properties.

Since state can only be modified from within a
component, a typical pattern in React is to provide a
stateful “container” parent component with two stateless
child components. The parent then exposes functions

which alter or reveal state to the child components via
props, and the child components access them as needed.
Typically, one child component is used to update the state
and one is used to display the state (or respond to its
value).

This concept can be a bit hard to wrap your head around
at first, but React is actually the simplest framework
in this text. The inheritance structure and simple state
management allow React to become extremely powerful
and versatile if needed, or subtle and convenient if only
minor integration is required.

Another major consideration for React is the speed.
React is fast. Like some other frameworks, React
uses a virtual DOM, so the real DOM is only updated
when it’s absolutely necessary. React’s far-reaching
compartmentalization and component hierarchy
optimize its virtual DOM handling—so much so that it
performs noticeably faster than most frameworks.

Because React is such a small and versatile tool, and
because components insert themselves into the DOM
using JavaScript, it can scale up and down to be as
involved in your application as you want it to be.

3. A generic visualization of a React programming pattern in
which a stateful parent component is used to maintain
communication between stateless child components.

STATEFUL
<App />

STATELESS
<Component />

PROPS PROPS

STATELESS
<Component />

http://wijmo.com
http://this.props
http://this.props.reaction
http://this.props.reaction
http://this.setState

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 26

Even though its lightweight nature makes it less of a
workflow platform and more of a tool, React’s support from
Facebook and popularity in the community mean that it’s
surrounded by a rich ecosystem. Plugins like react-router
and relay simplify view routing and data modeling, while
countless others provide powerful UI base components
and more. Like Angular, React has powerful plugins for
developing native applications—perhaps the best in the
frameworks arena.

2.5.2.
use cases

React is extremely versatile, and it scales well in both
directions. Whether you’re building a new, lightweight web
form for a growing small business or a massive enterprise-
level data management system, React can meet your
needs. If you’re looking for an out-of-the-box workflow
platform, it requires a bit more work. If you have time to set
up tooling yourself, React can be configured to become a
development partner that rivals Angular.

react in native mobile and Desktop

If you’re considering a JavaScript framework to build
a native mobile or desktop app, React is your best bet.
The same speed and performance offered by React’s
web libraries are also represented in the native sphere.
Furthermore, React Native strives to keep up with native
mobile standards on Android and iOS, providing a UX that
users expect. Apps like Airbnb and Instagram – which
together have amassed billions of downloads across mobile
platforms – are built using React Native.

If you want to check out a full listing of apps built with React,
head to the official website http://builtwithreact.io/.

React is the JavaScript developer’s
web framework. If you have the time

and determination to set up build
tooling and deployment workflow
manually, give React a shot first.

http://wijmo.com
http://React.js
http://builtwithreact.io/

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 27

Feature Recap:

react
lightweight, fast, and scalable
due to compartmentalization
and virtual dom

well-documented design
patterns and simple
philosophy

very rich ecosystem provides
great plugin support for any
deployment and build scenario

high modularity simplifies
integration into existing apps

supports server-side rendering
for offloading computationally
intense tasks

2.5.3.
migrate to react from pure Js

the gauge example, rewritten
Here’s the React version of the Wijmo gauge example:

App.js (Jsx - view)

component.js

When migrating to React, the most obvious change is
compartmentalizing all current markup and code into
components. If you’re trying to get an old app up and run-
ning with React, then it’s okay to simply set state on the
parent app component. If you’re designing a new app, you
may want to put some more thought into the hierarchy of
the app and which components need to share state, etc.

At the most basic level, after separating your app out into
components, you’ll use the react and react-dom libraries
to create the components (React.createClass()) and
ultimately render them (ReactDOM.render()).

Transitioning to React from pure JS isn’t too difficult, as
React stays true to the core principles of JavaScript—it
simply extends them a bit to support the creation of
components.

http://wijmo.com
http://React.js
http://App.js
http://Component.js
http://React.js
http://React.createClass
http://ReactDOM.render
http://React.js

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 28

2.6.
vue.js:
A pared-Down framework for the minimalist

2.6.1.
premise and main concepts

premise: Angular and React are well-established. They’re
widely used, have had multiple releases, and are built
around the philosophy of making feature-adds easier
for the user. They have their own learning curves, and
complexity ranges from “somewhat” (React) to “very”
(Angular). While Vue.js acknowledges that JavaScript
frameworks bring a lot to the table in terms of features
and workflow advantages, it considers the countless
additions and updates to other frameworks to be a source
of “feature creep” that ultimately obscures the ultimate
goal. thus, vue.js focuses on minimalism, providing a
simple framework with very few built-in utilities that
simply maps Javascript objects to the view scope
and handles specialized Dom tags.

Vue.js is a bit of a latecomer to frameworks. It wasn’t
until its 2.0 release in September of 2016 that it began
generating interest, and since then, it’s been steadily
climbing: a recent survey shows that more developers
have said they’re interested in learning about and trying
Vue.js than any other framework.

Why? Firstly, Vue.js is incredibly pluggable. The core of
Vue.js works great on its own, but it’s so minimalist that
you’ll likely have to use a plugin at some point in your
Vue.js application’s development lifecycle. Luckily, the
Vue.js team maintains the major plugins themselves,
making them easy to find and use. Interestingly, many
of these official plugins support features shipped with
other frameworks. To illustrate just how much Vue.js

draws from other frameworks, consider its out-of-the-
box JSX and rendering support. And you can easily add
TypeScript support. Sound familiar?

Vue.js isn’t stealing from other frameworks; it’s learning
from them. At its core, Vue.js is quite different from other
frameworks: it utilizes templates as fundamental units
that define dynamic behavior with a specialized syntax
composed of Vue.js attribute tags and mustache-style
variable replacement. This varies from JSX (which the
Vue.js team concedes is sometimes necessary), as it
keeps HTML and JavaScript separated. That split adds
major readability and workflow enhancements, like
allowing developers to use HTML pre-processors and
more familiar CSS styling.

2.6.2.
use cases

Another major focus of Vue.js is a “scale-as-you-
go” experience that encourages iteration-based app
development. You can either create a new Vue.js app or
transition an existing JavaScript project just by loading
a single script on your page. By installing the officially-
supported CLI—along with a host of other plugins
that support features like routing and advanced state
management—that single-script experience scales up to
a fully-integrated workflow.

Overall, I agree with the development community that
Vue.js is the most exciting up-and-coming framework
in the JavaScript field right now. It packs plenty of
features into a modular, customizable package while also
maintaining speed and performance (it’s even faster than
React!). The Vue.js development team put together a
thorough and helpful comparison guide at https://vuejs.
org/v2/guide/comparison.html that compares Vue.js to
other frameworks.

A note on Vue
Nomenclature

this section refers to vue 2,
since that’s now the officially-
supported version. this isn’t
a situation like angular, where
many people still use the first
version. most developers will
be upgrading to vue 2 for its
enhancements.

http://wijmo.com
http://Vue.js
http://tags.Vue
http://tags.Vue
http://tags.Vue
http://Vue.js
http://Vue.js
http://Vue.js
http://Vue.js
http://Vue.js
https://vuejs.org/v2/guide/comparison.html
https://vuejs.org/v2/guide/comparison.html

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 29

Vue.js offers some exciting feature opportunities and
performance gains for experienced framework users,
and the straightforward JavaScript object syntax makes
it easy to pick up for pure JS developers as well. In the
end, the only reasons Vue.js might not work for large
enterprise applications are a lack of support for older
browsers and the extra steps involved in setting up a full-
on workflow.

If you’re a developer building a cutting-edge web app, part
of a startup, or have experience with other frameworks
and are looking for something new, give Vue.js a try.

Vue.js in the Wild
While I wasn’t able to find a centralized list of sites using
Vue.js, I did find a few companies and sites who use Vue.js
in some capacity:

•	 GitLab
•	 Livestorm
•	 Citymoods

Vue.js is still trying to gain some traction and grab market
share from the other frameworks that have been around
for longer. Based on the amount of interest Vue has been
generating, though, it won’t be much longer until we see
many more websites built with it.

2.6.3.
migrate to vue.js from pure Js

the gauge example, rewritten
Here’s the Vue.js version of the Wijmo gauge example:

HtML (view)

JavaScript (controller)

http://wijmo.com

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 30

JavaScript (controller)

The great thing about Vue.js and its scalable, pluggable
philosophy is that migrating from pure JS can be as
complicated or as simple as you want it to be. On the
simplest level, you can import the Vue.js core script
(which only adds about 23kb with the built-in compiler,
by the way) and then map any unmapped existing data
structures to JavaScript objects. Then use JavaScript to
initialize the Vue.js instance in a DOM element, and you’re
ready to go.

Since Vue.js handles templating, data binding, and other
directive-like markup behavior with plain JavaScript,
transitioning your current JavaScript app to use the
more concise and performant Vue.js systems is usually
straightforward. The other advantage to using Vue.js
when migrating is that you can specifically target pieces
of your app for stepwise migration, allowing you to switch
over and test one section of an app at a time.

Feature Recap:

vue.js
relatively small core compared
to other frameworks (23 kb for
vue 2 core with compiler)

modularity is key with many
officially maintained plugins

virtual dom even faster than
react’s in most cases

cli via official plugin

routing via official plugin

advanced state management
via official plugin

typescript and jsx supported
but optional

readily scales in both
directions

clear separation between
templates and markup/
attribute directives

built-in transitions and
animations

server-side rendering
supported

http://wijmo.com

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 31

2.7.
knockout: build a plug-in with Data binding

2.7.1.
premise and main concepts

premise: When you boil down JavaScript frameworks, the
focus is always on data binding and dynamically updating
a view. Knockout strives to be the ultimate minimalist
framework by providing data binding capability without
any additional features or overhead.

If Vue.js is where minimalism stands now, Knockout is
where it started. Knockout is still updated and very widely
used today, and its longevity can be attributed to its
simplicity. In many ways, knockout can be considered
more of a library than a framework. It is not a full-
featured workflow solution, and it’s not trying to be. If
you’re looking for a small plugin that you can mix into your
current JavaScript application to get easy data binding,
look no further than Knockout.

Knockout is simple. To set up data binding and dynamic
views in Knockout, you need one HTML attribute, a simple
JavaScript data structure, and even simpler JavaScript
logic facilitated by the Knockout library. That’s all!
Knockout takes data binding options from the markup
as defined by a data-bind attribute, uses those options to
hook up some data stored in JavaScript to the DOM, and
ultimately applies the data binding when you tell it to.

In addition, Knockout has extensive browser support (as
in	IE	6+),	and	it	easily	integrates	with	other	JavaScript	
frameworks. It’s also agnostic of backend data sources,
as long as the data provided can be formatted as a
JavaScript object. So the real appeal of Knockout is that
you can take an existing .NET web app, for example, and
give it a dynamic view supported across all browsers in a
matter of minutes.

2.7.2.
use cases

The best use case for Knockout is when you’re adding
data binding to a preexisting application. Knockout can
also be used for new projects that require comprehensive
browser support, but keep in mind you’ll have to add
some other solutions if you want to automate other
aspects of your app, like view routing. The good thing is
that Knockout is so compact and concise that you won’t
have to worry about it interfering with the operation of
other frameworks, so it’s a good place to start if you’re
unsure about which of the more full-featured frameworks
would be right for you.

knockout in the wild
Because Knockout has been around for a while, and
because it can operate alongside other frameworks and
systems, it’s being used in a plethora of projects out
there on the web:

•	 Microsoft	Azure
•	 JSFiddle
•	 AMC	Theatres
•	 BMW	USA

These large, complex websites use Knockout to take care
of specific, pin-pointed data binding tasks. This is where
Knockout really shines.

http://wijmo.com

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 32

Feature Recap:

knockout
13 kb after compression and
gzipping

supports virtually all browsers

written in pure javascript; can
integrate with other frameworks

templates are supported but
not required for advanced
function

simple to learn and use

provides methods for
dependency tracking in
javascript

JavaScript (controller)

Out of all the frameworks we’ve looked at, Knockout
offers the smoothest transition from a pure JavaScript
project. All you need to do is load the Knockout library,
add a data-bind attribute to any databound HTML
elements, and supply some data via a ViewModel from
JavaScript.

The transition can be even easier if you’re using standard
HTML elements that are already managed using
something like jQuery. Simply add the data-bind attribute
(if you have data to bind to) and replace the jQuery
event bindings with plain JavaScript objects and a call to
ko.observable.

2.7.3.
migrate to knockout from pure Js

the gauge example, rewritten
Here’s the Knockout version of the Wijmo gauge example:

HtML (view)

http://wijmo.com
http://ko.observable

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 33

2.8.
frameworks in review

Angular offers the most complete development workflow experience
out of the frameworks discussed, but sacrifices development speed
and size for it.

Challenge to transition from pure JS: difficult

React.js comes with the richest ecosystem offered by
any framework and it offers considerable performance,
compartmentalization, and state management, but everything
must be a component.

Challenge to transition from pure JS: intermediate

Vue.js is the newest and the most broadly scalable of the
frameworks discussed, making it a great fit for businesses of any
size, especially growing ones.

Challenge to transition from pure JS: intermediate

Knockout provides the simplest solution to building a dynamic
view with data binding and is small and flexible because of it,
but lacks the workflow tools offered by the other frameworks.

Challenge to transition from pure JS: easy

AngularJS is a great starter framework if you want to add dynamic
views to your application while also supporting custom components
without compartmentalizing everything in your app.

Challenge to transition from pure JS: intermediate

Vue.js

http://wijmo.com

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 34

3.1.
specing out your App

the spec ranking method, as i call it, requires you to rank
these four criteria:

part 3
The SPEC Method:
Select the Best Framework for Your Team
while you can apply any framework to any application and development scenario, the evaluation methodology outlined below reflects my recommendations
based on data collected from various sources. i draw on my firsthand experiences from working at Grapecity, where we’ve gone to great lengths working
with customers and framework teams to make wijmo the only ui library to fully integrate with the five frameworks talked about here.

SPEED

PRODUCTIVITY

Ecosystem

cOMPATIBILITY

http://wijmo.com

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 35

let’s look at a few key statements:

•	 No	matter	which	framework	you	pick,	you’ll	be	using	a	
 top-notch development tool.

•	 The	SPEC	method	requires	you	to	think	deeply	about	
 your project. you can’t weigh all four elements equally;
 you must choose one and provide more focus to your
 developers.

•	 This	method	does	not	distinguish	between	AngularJS	
 and angular (more on why later). in brief, this method
 fits a framework to a project, not necessarily to a team.
 if you end up picking angular, you’ll need to take an
 extra step to assess which version is best for your
 team.

3.1.1.
using the spec method

step one: rank
rank the following in order of priority for your project and
its development:

•	 Speed: how important is your app’s performance,
 especially in terms of client-based logic operations?

•	 Productivity: how important is the degree of workflow
 management and project structure provided from the
 outset of development?

•	 Ecosystem: how important is your development
 team’s access to community support and plugins?

•	 Compatibility: how important is it that your app can
 reach the most browsers on the most devices?

step two: get your framework
Use the lists below to formulate your choice. Each list
represents one of the SPEC properties and ranks the
framework options in respect to that property. The
simplest way to decide is to find the list for your top
priority selection and choose the #1 ranked framework.

step three: Download and set up your chosen
framework.
More on Migration in Part 4.

step four: run tests and collect metrics.
You’ll want to prove that your top priority item is meeting
your project goals using the new framework.

that’s it!

1. 2. 3. 4.

1. 2. 3. 4.

1. 2. 3. 4.

1. 2. 3. 4.

SPeed

PrOdUCtiVitY

eCOSYSteM

COMPatiBiLitY

Vue.js

Vue.js

Vue.js

Vue.js

http://wijmo.com

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 36

3.2.
how the spec method works

The framework rankings in step 2 are based on a
collection of factors I talked about in the previous section
of the paper. Here’s the methodology in determining the
ultimate decision.

3.2.1.
speed and performance

Ranking was determined based on assessment of three
factors: logic operation speed, RAM consumption under
load, and core dependency size. At the end of the day,
Vue.js comes out on top due to its unique combination of
a virtual DOM and hot updating. React comes in a close
second, followed by the Angular duo and Knockout in
last. Angular, specifically, competes very closely with
React and Vue.js. Its core dependency size is the highest
of all the frameworks, but this only plays into network
performance. The reason the Angular pair is placed in
third is because of the slightly weaker performance of
AngularJS. It doesn’t take advantage of some of the
new performance-enhancing features of JavaScript and
browser APIs, and its general structure causes it to be a
little bit slower in DOM operations.

In general, all frameworks perform well enough for
production use. I put performance in its own category
mainly because many companies still use it as a crucial
metric when justifying software choices, especially when
the framework is used in a “mission critical” application
and/or an application that will be under heavy load.
These conditions justify using a framework just to save
a few extra milliseconds in computation time. If your top
priority for framework selection is performance, before
you select Vue.js based on this factor alone, I encourage
you to think deeply about why performance is so critical
to your application, and whether you can afford to
sacrifice a few milliseconds for other benefits.

Let’s look at the three factors that go into performance:

continuous logic operation performance

This data comes from an automated JavaScript
framework benchmark suite (https://github.com/
krausest/js-framework-benchmark) developed and
maintained by Stefan Krause. The benchmark runs tests
for a slew of frameworks, including the five I’ve covered.
The tests involve loading and displaying thousands of
rows of data and then dynamically removing, formatting
and updating certain rows once displayed in the DOM.

SPeed
ranKingS

1.

2.

3.

4.

Vue.js

http://wijmo.com
http://Vue.js
http://Vue.js
(https://github.com/krausest/js-framework-benchmark)
(https://github.com/krausest/js-framework-benchmark)

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 37

For each test on each framework, a slowdown value is
reported. The slowdown is represented in milliseconds and
is calculated by dividing the average duration of the test by
the fastest iteration of the test for that framework. This is
a relevant metric because it evidences a factor related to
real-world performance. It shows how much a framework
can be slowed down by its own logic. For SPEC purposes, I
report an average of slowdowns for all the tests.

Because of the calculation, you can think of 1 as a perfect
score (no slowdown). Anything greater than that is a
slowdown factor, e.g. a slowdown of 2.6 would mean that
framework has the potential to perform 2.6 times slower
than expected, simply due to its internal workings.

The results speak for themselves, but the fact is, none of
the frameworks exhibit any major slowdown. Knockout
is the only one that breaches the 2x slowdown mark, but
even that’s insignificant when the fastest operation is
under 1 millisecond.

rAm usage under load

This measures the amount of client RAM each framework
uses immediately after adding 1000 rows of data to
the DOM. This data is also taken from Stefan Krause’s
benchmarks, and using as little RAM on the client
computer as possible is ideal. Vue.js is the undisputed

winner, using just under 9 MB under load. Knockout comes
in last again, using over 25 MB for its processes. RAM Usage
becomes a major concern if you’re building your application
with accessibility and responsiveness in mind. “The next
billion users” of the internet are likely going to be accessing
websites via less powerful smartphones, where memory
consumption is a legitimate concern, so err on the side of
caution and use as few resources as possible in your apps.

core Dependency size

These numbers represent the transported file size of each
framework’s core dependencies. This is representative
of files you’ll deliver to the end-user when they use your
application.

As with the other metrics, this factor’s importance has
qualifications since the largest framework (Angular) is still
only 111 Kb when transported. For users in urban areas,
downloading this amount of data is typically a menial task.
If your users don’t have access to high-speed internet,
or are slowed down by company network stacks, Core
Dependency Size becomes more important. Because
of its focused functionality, at 22 Kb, Knockout boasts
the smallest core dependencies. At five times that size,
Angular is by far the largest framework. Even a 10 Kb
difference in file size can make a 100 ms difference in
loading time for users on a 2G connection.

http://wijmo.com
http://Vue.js

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 38

3.2.2.
productivity and workflow

To determine a ranking for this section, I took a broad
overview of the out-of-the-box workflow and project
management solutions shipped with each framework. I
also considered the official plugins available and the type
of “development culture” each framework encourages.

With its first-class support for TypeScript and a built-
in CLI that facilitates data model and app route auto-
generation, Angular emerges as the clear winner.
Angular also provides a built-in compiler and module
loading system that encourages a specific format of
compartmentalization and modularity, so your team
spends less time making productivity decisions and
more time coding. Angular brings along its older sibling,
who shares design concepts like modularity handled by
the framework itself. Both Angular versions have built-in
compilation options that make deployment much easier.
Although third-party task runners like Gulp and Grunt can
elevate other frameworks to this level of automation, the
functionality isn’t built in like it is in Angular.

Vue.js and React essentially tie for second place
because of the availability of workflow add-ons for both
frameworks. Most of these add-ons, which increase
functionality to include routing, CLIs and more, are
optional, and are not considered out-of-the-box solutions.
Vue.js and React may be better choices for teams who
are migrating and bringing along their tooling, or for
the developer who wants flexibility and options without
compulsory workflow solutions.

Knockout doesn’t offer many official plugins that deal with
workflow. Despite this, its versatility and ability to insert
into another framework’s project make it a valid option
if you only want to extend the function of an existing app
that already has a solid workflow.

3.2.3.
ecosystem

Ecosystem is similar to Productivity and Workflow, but
it focuses more on the available extensibility of each
framework and variety of plugins available.

Facebook has cultivated a rich ecosystem, and that puts
React at the top of the list. Whether you’re looking to
build a full-scale data processing web app or a fun photo-
sharing iPhone app, React has you covered. React offers
plugins that implement routing, project management,
deployment, native integration, and extensive data
interfacing through novel data access paradigms like
GraphQL (also developed by Facebook). React has also
amassed community fervor that reaches far beyond
that of any other framework. If you have trouble getting
started with React, it’s likely that you can find an answer
to your specific problem with one Google search.

Angular offers considerable support in this area, and the
Angular community is large (in fact, working with Wijmo,
we’ve seen the biggest response from Angular users),
but it doesn’t eclipse React’s community of startups and
freelance web developers.

Vue.js falls in line with Angular, but its community is much
smaller. It officially offers many significant plugins, like a
CLI and routing, but the community hasn’t shown much
enthusiasm for developing plugins. This will likely change
with time, but if you’re looking for great community
support right now, turn to React and Angular.

I hate to keep putting Knockout last because it’s a
great tool! The problem is, it’s more of a library than a
framework, and it stands in its own category throughout
this e-book. Knockout has strong community know-
how and support, but since Knockout is sometimes
considered an add-on itself, not many plugins interface

PrOdUCtiVitY
ranKingS

1.

2.

3.

4.

eCOSYSteM
ranKingS

1.

2.

3.

4.

Vue.js

Vue.js

http://wijmo.com
http://Vue.js
http://React.js
http://Vue.js
http://React.js
http://Vue.js

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 39

with it. If you need routing or other advanced web app
features, the most common solution would be to use
something like ASP.NET MVC and simply integrate
Knockout into your views. If you’re looking for a
standalone framework with rich plugin availability,
Knockout isn’t your best option.

3.2.4.
compatibility and browser support

And at last, Knockout comes out on top! When it comes
to browser support, Knockout does it all. Supporting all
the way back to Internet Explorer 6, Knockout covers
over 99% of the global browser market share. If you
have a mission critical pure JS app and you want to
give it some new tricks without sacrificing accessibility,
integrating Knockout will ensure that you keep all your
browser support.

React and Angular are close on browser support. They do
support most major browsers, but only support IE back
to version 9. This still covers most of the current browser
market share, but may leave out vital businesses that still
rely on very old IE support.

Vue.js also supports browsers back to IE 9, but its
small community means fewer polyfills and shims
are available for Vue.js-specific features that may be
backported to older browsers.

If browser support is an absolute necessity for your
project (perhaps you’re building a web app for a business
reliant on IE 8 or older), I suggest taking a pure JS app
and slightly tweaking it with Knockout. If this isn’t the
case, you can still cover over 95% of browser market
share with the other four frameworks.

COMPatiBiLitY
ranKingS

1.

2.

3.

4. Vue.js

http://wijmo.com
http://ASP.NET

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 40

part 4
migrating to a new Framework
if you’re getting ready to use a javascript framework for
the first time, this all might seem a little foreign to you.
don’t be deterred; you have an advantage over someone
who’s looking to migrate from one framework to a
different one. you’re starting fresh, and that means a lot
in the framework world.

4.1.
the biggest hurdle is team culture

even if you end up going with a framework that offers
full-featured workflow solutions like angular, you’re going
to need to spend time setting up tooling and culture to
make the framework fit your needs. the time investment
it takes to set up build tooling alone is enough to start
“biasing” your team toward a particular framework. it
can take weeks to get a proper build toolchain configured
and automated, and that doesn’t account for ongoing
updates and maintenance applied over time. therefore,
if you’ve been using another framework to build your
application and want to switch over, expect to spend at
least a few weeks adjusting your tooling to work with the
new framework.

in addition, be prepared to handle the friction that comes
with changing a deeply ingrained development culture.
each framework establishes its own philosophy that
filters down to developers’ mindset. For example, angular
and its most popular components are built by some of
the world’s largest enterprises like Google and microsoft,
so it’s no coincidence that angular is most often used

by other large enterprise-level companies. the large-
scale, efficiency-driven mindset that drove angular’s
development trickles down to users and affects their own
development culture. the cli has this effect by enforcing
a specific file structure when used to create projects.

neither of these transitory obstacles are much of a factor
when moving to a framework from pure js because the
frameworks themselves are built from pure js. you’ll still
need to add some new software to your computer and
thought patterns to your mind, but the difference is you
won’t need to override anything.

4.2.
give it a month

ultimately, if you’re migrating to a new framework from
any other platform you can expect to spend at least a
month finding your stride. the total time depends on
where you’re coming from and where you’re going, and
the transition between certain frameworks may be
easier than between others. if you’re migrating a project
from pure js to any framework, you’ll experience the
quickest overall migration time and the fewest number
of gotchas. switching to vue.js from any of the other four
frameworks should also be relatively simple, since its
core principles draw on philosophies established by the
other frameworks that came before it. react, angularjs
and knockout also work well as migration endpoints
because they’re tooling-agnostic; you can likely just bring
over your existing tooling and easily hook it up to the new
framework.

http://wijmo.com
http://Vue.js
http://React.js

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 41

Angular is really the only option that will introduce more
overhead to the migration process, simply because of the
tooling and languages (TypeScript) that it encourages
developers to use. The switch is worth it if you’re
working in a large team or want to further automate your
development process. Plus, despite the differences,
many pieces of programming know-how will always be
transferable. Keeping in mind the philosophy of separation
of concerns while developing is one of these transferable
bits of knowledge. Another good example is knowing how
to use a package manager to organize dependencies.

If you’re worried about syntax, refer back to the “Migration
from pure JS” sections earlier in the e-book. Each of
these sections covers syntactical differences between
the frameworks, and they provide a solid baseline for
estimating how much you’ll have to change in your code.

4.3.
third-party libraries save time

One more thing: consider the power and efficiency of
using third-party libraries with multiple-framework
support. As you’ve seen throughout this e-book, Wijmo
provides an extensive library of UI controls for the web,
and it ships with first-class support for all five of the
frameworks we’ve talked about. You can build a web
application using AngularJS and a UI driven by Wijmo. If
your company grows and decides it would be better to
switch to Angular, you only need to switch out your Wijmo
reference and make minor syntactical tweaks to the UI.
Rather than needing to author your own UI components
twice, you don’t have to author them at all. That’s the
power of interoperable tools like Wijmo. They increase
your productivity at the start and throughout the life of
your team’s evolving needs.

4.4.
the x factor: Do you like it?

All of these frameworks are incredibly versatile. If one
simply speaks to you and your team, your best bet may
be to pick what feels natural. Even the frameworks with
relatively low community support and ecosystem size
have enough plugins to be customized to fit any app’s
needs. That being said: there’s still only one right choice
for your team. Logically, only one framework will work
best for your team, and that depends on your project
focus and your team’s personality.

In the end, don’t get bogged down in the decision-making
process. The SPEC methodology is designed to make a
lofty, unwieldy decision-making process quick and easy.
Overthinking it may lead you to make the wrong choice.
Review the SPEC methodology and its suggestions, and
then examine how you and your team feel about each
framework.

In the end, this decision includes a vital “X factor” that
isn’t expressly included in the SPEC method. (SPEX,
perhaps?) The personal preference of you and your
team always enters into the equation. Even if all of the
quantifiable signs (SPECs) are pointing to React, for
example, if your team just doesn’t get into it, you’ll have
to pass it by. If your team loves SPEC’s recommendation,
you’ll have strong justification to devote time to get
started with the framework. Even if it turns out that SPEC
doesn’t suggest the right framework for you, at the very
least it will encourage you to reexamine your team’s
most important needs in the context of your new project.
SPEC will also provide you with a versatile foundation for
justifying a previous framework choice. Even if you’ve
already started development with one framework, the
SPEC criteria are great discussion points for hashing out
your decision.

http://wijmo.com
http://React.js

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 42

part 5
conclusion

Even though we’ve focused primarily on comparing
JavaScript frameworks, I hope you come away with one
singular, inherent message: frameworks are powerful. If
you’re not using a JavaScript framework in your web app
now, I recommend that you integrate one as soon as you
can. This paper examined just five of the most popular
frameworks available, but you can explore plenty of others.
With all the options available, there’s a JavaScript framework
out there that will fit the needs of your application, increase
performance, and improve your development workflow.
Sure, it’s possible to build an interactive web app without a
framework, but why would you? It’s also possible to travel
from New York to Los Angeles by foot, but that’s not a
time-efficient choice when we have non-perambulatory
transportation.	Similarly,	the	traditional	HTML	+	CSS	+	
JavaScript project design is not as time-efficient as using
frameworks.

Nearly every JavaScript framework is surrounded by
an entire ecosystem of add-ons and plugins that can
help you meld a framework to fit your exact needs and
ultimately make development even easier. For instance,
Wijmo illustrates the power and versatility of using plugins
in conjunction with frameworks, from easy and ready
integration to feature-rich components that can be loaded
into your project with just a few lines of code. Accelerating UI
development gives an advantage to any workflow system, so
you can see how building your app with a framework opens
the door to countless opportunities for improvement beyond

the framework itself. (Wijmo also works with pure JS, but the
integration is inherently more complex.)

If you’re already using a JavaScript framework, I hope you
have some new information to think about. Maybe you were
thinking about switching frameworks and now you have
some better direction concerning which framework to move
to, or maybe you were already switching and I validated your
decision. In any case, I hope the SPEC method provides a
solid process you make decisions in the future.

you can build an interactive web app without a framework.
But why would you?

One Last Assignment:

Set up Hello, World, in at least one

of the frameworks. It’s as fun here as

it was the first time you tried it, and

demonstrates how easy it is to set up.

Let me know how it goes.

http://wijmo.com

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 43

JavaScript wasn’t always the grand language that it is
today. For a long time following its inception, JavaScript
was mostly used for gimmicky website effects, like
firework animations. It’s come a long way from its archaic
beginnings. The best way to see this dramatic, if gradual,
improvement is to look at the ECMAScript standardization
of JavaScript.

If you know what JavaScript is, then you also know what
ECMAScript is. These two titles both refer to the same
programming language. The colloquial name “JavaScript”
is a strategic misnomer. Even though JavaScript syntax
bears some resemblance to Java, the languages vary
widely on their core principles. Brendan Eich, a former
Netscape employee credited with creating JavaScript in
1995, coined the name JavaScript due to Java’s immense
popularity at the time. Without this marketing ploy,
JavaScript may not have been adopted by the community
at large. On the other hand, that original name has left
web developers with a confusing conundrum in modern-
day usage of the language. Even though “JavaScript” is
now universally recognized, its etymology often remains a
mystery.

Shortly after JavaScript’s creation, the European
Computer Manufacturers Association (ECMA), which
puts forth standards for many modern technological
protocols and programming languages, was tasked with
standardizing the ambiguously-named language. From
this effort was borne the ECMAScript (ES) specification.
Although related, ECMAScript and JavaScript are not
synonymous. JavaScript is an implementation of the
ECMAScript specification. (Other implementations of
the ES specification exist, though they’re used much
less widely than JavaScript.) Nonetheless, because of

its widespread usage, JavaScript is the “poster child” of
ECMAScript. Generally, and especially in this e-book, any
time you see a specific ECMAScript standard revision
mentioned, you can think of that as “how JavaScript
implements this ECMAScript standard revision.”

The recently-finalized ES2018 standard is still undergoing
adoption by most major browsers and JavaScript
engines. As expected, adoption is occurring feature-by-
feature rather than holistically. While this can muddle
compatibility issues, the upside is that it allows us to
see that JavaScript is now far separated from its original
identity. No longer a simple gimmick of a programming
language, JavaScript has adapted to address a major
issue that has fueled debate over its usefulness:
eloquence. With new features like block level scoping
and generator functions shipping in ES2018, JavaScript
can now hold its own among the traditional “refined”
programming languages like Java and C#. Impressively,
JavaScript is coming into this role while retaining its
usefulness as a procedural, customizable language as
well. All this evolution culminates to offer a platform that
is powerful and useful, not only for the client-side web, but
also for server-side and native apps.

Understanding this history is important to understanding
the current boom in JavaScript usage. The changes
included in the recent ES2018 standardization and
the advent of other new technologies—like local
storage through the browser and web sockets—have
been especially important to enabling the “Dawn of
Frameworks” that necessitated this e-book.

AppenDix A:
the rich history of Javascript

http://wijmo.com

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 44

Although many have tried, it’s difficult to generate reliable
statistics on exactly what fraction of internet users have
run some form of JavaScript. Fortunately, all modern web
browsers support and enable JavaScript out of the box.
Even browsers that ship with smartphones have JavaScript
support that mirrors or outdoes their desktop counterparts.
So pretty much anyone who has a semi-modern device
has access to JavaScript content on the web. Even if you
look back several years, you’ll find that the majority of web
browsers shipped with JavaScript support enabled by default.
Even if this support is not complete (due to compatibility
issues with new syntax, etc.), most features can be polyfilled
or shimmed to make them work in older browsers. Overall,
estimates put JavaScript accessibility near 100% of internet
users. (This doesn’t account for the relatively small group
of people who voluntarily turn off JavaScript.) I’ll be the
first to admit that we, as developers, have a responsibility
to make content accessible to everyone who uses the
internet. Luckily, most of the major JavaScript frameworks
provide a check and fallback mechanism for users who can’t
access JavaScript-driven apps. As a developer, you’re still
responsible for providing static fallback content, but even that
can be generated using JavaScript on the server.

The major takeaway here is that putting your money on
JavaScript support when deciding to use a framework is a
pretty safe bet to make. You can count on reaching virtually
all internet users, and you can still use JavaScript to render a
static fallback if you’d like.

The idea of using JavaScript to generate and serve static
content brings up another interesting topic: server-side
code. With the advent of Node.js, server-side JavaScript has
become mainstream and commonplace. Node provides a
powerful platform for writing reliable and fast server-side
applications using JavaScript, and its scalability has made it
a viable option for large and frequently used server-side APIs.
While it may not be obvious, this is yet another reason to use

JavaScript frameworks. The availability of Node.js brings with
it the possibility of a unified codebase. You can potentially
integrate your entire development stack with the JavaScript
language, building a backend with Node.js and a front-end
with a JavaScript framework, to improve workflow and team
communication.

Node.js has also introduced the web development world
to Node Package Manager (NPM), which further facilitates
JavaScript development. With thousands of handy
pluggable modules at your fingertips, the ability to share
package configurations for a project, and an easy install
process, NPM has revolutionized the development world.
In the scope of frameworks, NPM makes starting up a new
project and adding any popular framework a breeze. In
fact, the “Installation” pages of almost all major JavaScript
frameworks begin immediately with an npm install
instruction.

the combination of widespread browser support, server-
side platforms, and package management solutions
makes now the best time to start using a Javascript
framework. As a matter of fact, some recent surveys
indicate that over 70% of JavaScript developers have already
used a front-end framework, and over 95% have at least
heard of one of the frameworks discussed in this e-book. And
if everyone else is using them, there must be something to
this whole framework thing, right?

The widespread usage of JavaScript frameworks not only
indicates that they work well; it also means that a vast array
of resources and plugins have been vetted and improved by
the large JavaScript community. It always feels better to start
something new when you know others have done it before you.
So rest assured: many have traveled and survived the path to
framework enlightenment on which you’re about to embark,
and they’ve left some helpful tools and tips along the way.

where is Javascript now?

http://wijmo.com
http://Node.js
http://Node.js
http://Node.js
http://Node.js

a publication | GRAPECITY.COM | © 2018 Grapecity, inc. all riGhts reserved. 45

AppenDix b:
resources

the samples

You can access all the Wijmo Gauge control samples on
the official Wijmo website: https://www.grapecity.com/
en/wijmo#demos

let your voice be heard

Take a minute to voice your opinion! Share whether
you’ve used any frameworks, if I’ve missed some you
think I should’ve included, and whether you have decided
to try a new framework based on this e-book.

get in touch
If you want to talk about the e-book, JavaScript
frameworks, or anything else at all, really, get in touch
using the information below:

christian gaetano
christiangaetano.com
[@cgatno] (https://twitter.com/cgatno)

Acknowledgments
And with that, my discussion of JavaScript front-end
frameworks comes to a close. I have a lot of people to
thank for offering up resources to write this e-book. But
most of all, I want to thank you, the enduring reader. I
hope you enjoyed your time here and learned something
in the process, and I hope you’ll come back for more in
the future!

I also want to send out a huge thank you to everyone at
GrapeCity for giving me the time and resources needed
to tackle this topic. (Not to mention for taking the time to
read and edit all of my long-winded sentences!)

last but certainly not least, i want to thank:

•	 Sacha	Greif	for	conducting	perhaps	the	most	fiery	
programming survey to date (http://stateofjs.com/)

•	 Stefan	Krause	for	building	an	awesome	JavaScript	
framework benchmark suite (https://github.com/
krausest/js-framework-benchmark)

•	 The	Angular	team	at	Google

•	 The	React	team	at	Facebook

•	 The	Vue.js	team

•	 The	Knockout	team

•	 The	TypeScript	team	at	Microsoft

•	 Kyle	Simpson	for	showing	me	the	JavaScript	light	
(https://github.com/getify/You-Dont-Know-JS)

http://wijmo.com
You can access all the Wijmo Gauge control samples on the official Wijmo website: http://demos.wijmo.com/5/SampleExplorer/SampleExplorer/Sample/GaugeIntro. [HYPERLINK]
You can access all the Wijmo Gauge control samples on the official Wijmo website: http://demos.wijmo.com/5/SampleExplorer/SampleExplorer/Sample/GaugeIntro. [HYPERLINK]
@cgatno](https://twitter.com/cgatno
christian.gaetano@grapecity.com
christiangaetano.com
http://stateofjs.com/
https://github.com/krausest/js-framework-benchmark
https://github.com/krausest/js-framework-benchmark
https://github.com/getify/You-Dont-Know-JS
@cgatno](https://twitter.com/cgatno

