
DESKTOP TO WEB:

MIGRATING FROM
WINFORMS TO
JAVASCRIPT

A migration guide for development teams
building enterprise applications.

Table of Contents
Migrating from WinForms to JavaScript 3

Desktop Enterprise Applications 4

Shifting to the Web 5

Understanding The Web Ecosystem 5

Our Recommendation: Angular and TypeScript 6

The Angular/TypeScript Toolchain 9

Data Access in Web Applications 10

Starting the Migration Process 11

Angular Libraries, Modules, and Components 12

Build and Deploy 15

The Future 17

Wrapping Up 18

2 Desktop to Web:
Migrating from WinForms to JavaScript

Many companies today are moving from
desktop software to web applications. As
part of that process, desktop developers
sometimes find themselves scrambling to
learn how to build enterprise applications
with a new technology stack — specifically
the modern JavaScript ecosystem.

Building enterprise applications with web
technologies is the future. In the long run,
you have more options for development
tools and technologies. Your ability to
quickly deploy fixes, new features, and
entire apps is greatly simplified. And web
technologies lets you easily deploy to almost
any desktop or mobile platform from a
single codebase.

Web development
has been on the rise
for many years, and
it is now overtaking
desktop apps in both
market share and
richness of features.

Web development has been on the rise
for many years, and it is now overtaking
desktop apps in both market share and
richness of features. When an enterprise
begins a new development project today,
the web is usually the target platform.
But the library and framework options
available from the JavaScript ecosystem can
be overwhelming. Common questions for
many organizations are: Where do I start
evaluating a new technology stack? What
is our best migration path from desktop to
JavaScript?

This is a guide for development teams
and software dev leads to find the best
approach to migrating. We want to help
guide you and give you a structured way
of bringing existing Windows Presentation
Foundation (WPF) and WinForms apps to
modern web technologies.

Here, we will explain the issues you should
consider when migrating from desktop to
the web, then walk you through the key
elements of our recommendation as to the
best path today: Angular and TypeScript.

Migrating from
WinForms to JavaScript

3Desktop to Web:
Migrating from WinForms to JavaScript

Desktop Enterprise Applications
WinForms applications has been the
framework of choice for desktop
development for many years. There are
several good reasons: the dominance of
Windows on enterprise desktops, rich
development tools, a vast third-party
control ecosystem, and the perceived
security of self-contained applications
inside company firewalls. With WinForms,
desktop developers could build feature-rich
applications quickly with the power of Visual
Studio and the .NET Framework.

WinForms became the desktop platform of
choice for data-entry and utility applications,
replacing many legacy mainframe
applications in the years following the Y2K
scramble.

The introduction of WPF in the mid-2000s
provided Windows desktop developers
with a UI platform that could create more
visually appealing apps. While WinForms
had that classic Windows, utilitarian look-
and-feel, WPF let developers style UI
elements to have almost any appearance.

WinForms remained popular for building
simple, stand-alone utilities and in many
client/server and 3-tier architected systems.
WPF developers adopted the Model-View-
ViewModel (MVVM) pattern to create unit-
testable apps with more complex, rich UIs,
sometimes backed by web services.

Building applications with web
technologies such as HTML, CSS,
and JavaScript gives companies
the ability to create both a mobile
app and a web app.

4 Desktop to Web:
Migrating from WinForms to JavaScript

Shifting to the Web
As business users began to use
smartphones, enterprises were presented
a choice to support a mobile workforce:
create native mobile apps for their users or
shift to the web. Desktop apps were not an
option on mobile devices, and no desktop
development frameworks have seen long-
term success directly migrating to cross-
platform web or mobile use.

Building applications with web technologies
such as HTML, CSS, and JavaScript gives
companies the ability to create both a
mobile app and a web app. First, web
apps can be used on any platform with a
browser. (Headache-inducing problems like
juggling browser compatibility are mostly
a thing of the past today.) But second, the
majority of popular, modern cross-platform
mobile development frameworks use HTML,
CSS, and JavaScript.

Enterprises that choose to stay with their
desktop apps and create native mobile apps

are forced to maintain separate code bases
for desktop, Android and iOS. They may
share some business logic, services, and
data (assuming the legacy desktop app was
not a tightly coupled monolith), but each
will need individual client apps.

Companies weighing these factors are
overwhelmingly choosing to start building
with web technologies. Modern web
applications leverage components and
modules for maximum code reuse and
scalability. Staffing is also easier when you
can draw from a huge base of experienced
web developers.

The rise of web development also brought
about advances in DevOps practices such
as Continuous Integration (CI), Continuous
Delivery (CD), microservices, and the
ability to rapidly build, test, and deploy
web applications using commodity cloud
infrastructure.

Understanding The Web Ecosystem
Most desktop applications are complex
beasts behind the code and don’t seem like
they could be easily recreated in a web app.
But in reality, we’re usually just translating
from one set of patterns to another. In
many cases the patterns are the same, just
called something else.

Migrating to web technologies can seem
more complex than it really is. For all
the apparent confusion of libraries and
frameworks, it’s really pretty simple. The
early web brought many limitations to
developers: issues like limited memory,
performance limitations for complex scripts,

5Desktop to Web:
Migrating from WinForms to JavaScript

and browser compatibility issues. Web apps
running in browsers are sandboxed with no
direct access to client file systems, printers,
or local networks.

However, each unit of web app develop-
ment is simply HTML, CSS, and JavaScript —
and in the case of server-side functions or
some frameworks, just JavaScript.

Today developers write server-side
JavaScript functions with Node.js, use
mobile frameworks, and their work is

abstracted from differences in browsers by
current JavaScript frameworks and libraries.

With all of these frameworks and libraries
to choose from, which one is the best
for today’s enterprise? The choice can be
overwhelming. There seems to be a new,
hot JavaScript library or framework release
every week. How can anyone know which
framework is the right one, and that the
framework chosen today will continue to be
supported 3-5 years from now?

Our Recommendation:
Angular and TypeScript

Our guidance for migrating your team
from WPF or WinForms development to
a web technologies revolves around two
central concepts: adopting a language and
runtime that leverages your team’s existing
knowledge and toolchain, and choosing a
solid framework with a proven track record
and broad industry support.

Our recommendation is to take a look at
TypeScript as the scripting language and
Angular as the web framework.

TypeScript is a superset of JavaScript. What
does that mean? It means that all valid
JavaScript code is also valid TypeScript code.

The TypeScript language was first released
publicly in 2012 and reached version 1.0
status in 2014.

It was created by Anders Hejlsberg at
Microsoft, where it is developed as open
source. Hejlsberg also created the C#
language. TypeScript continues to mature
and, as we write this, is at version 3.5.

TypeScript takes JavaScript and builds
on it by adding features that make it
an object-oriented language like C#. It
is becoming the language of choice for
large-scale web development projects. In
fact, beginning with version 2.0, Angular
itself is built on TypeScript.

6 Desktop to Web:
Migrating from WinForms to JavaScript

http://Node.js

TypeScript is a strongly-typed language. Traditionally, JavaScript was dynamic and had a
very loose type system. This has been changing and is becoming closer to the type system
in TypeScript since the introduction of the ECMAScript 6 (ES6) specification of JavaScript.
TypeScript, as the name implies, adds a strong type system. Developers can also define
their own classes and interfaces. The type system provides developers with compile-time
checking and IntelliSense while coding.

Here is an example of a class defined and used in TypeScript:

The syntax looks like JavaScript. It compiles to pure JavaScript, but it should also feel
familiar to C# developers. The type system is similar to that in .NET, which will ease the
transition to web development for veterans of desktop development.

Want to try TypeScript before installing it? Visit the TypeScript Playground. There you can
write TypeScript in the editor and see it compiled to JavaScript in real time.
There are some great examples to get started with TypeScript.

7Desktop to Web:
Migrating from WinForms to JavaScript

https://www.typescriptlang.org/play/index.html

Desktop WPF and WinForms developers write most of their business logic in C# targeting

the .NET Framework, which provides a rich set of libraries and helpers. When migrating to

web technologies, developers are going to need a comparable JavaScript framework to

provide the same kinds of libraries and helper functions.

That’s where Angular comes into play.

AngularJS was first released in 2010 as an open-source JavaScript framework. AngularJS
released several iterations before being completely rewritten in TypeScript and released as
Angular 2 in 2016.

The current version of Angular as we’re writing this is version 8.2.0, and version 9 is
planned for release before the end of 2019. As you can see, the Angular team has been
iterating quickly since the launch of Angular 2. While the update from AngularJS to Angular
2 introduced many breaking changes (enough for many web developers to re-write their
apps), each release beyond version 2 has seen far fewer significant changes.

Angular has an upgrade guide to help web developers update their applications when
changing versions of Angular. Enter a source and target version of Angular to see a list of
recommendations when updating.

While migrating a well-architected WPF or WinForms application to an Angular app will
involve writing new client-side code, many desktop controller layers will logically translate
to Angular components. We will talk more about Angular components, modules, and other
design concepts in a later section.

8 Desktop to Web:
Migrating from WinForms to JavaScript

https://angular.io
https://update.angular.io/

So, what’s the best way to get started with Angular and TypeScript and plan your
application’s migration?

The Angular/TypeScript Toolchain
Let’s start the discussion of an Angular application’s toolchain with a comparison of the
desktop and web application toolchain components.

Notice how many of the concepts and tools
are exactly the same or at least very similar.
This is why so many developers find that
the move to web development can be a
relatively smooth transition.

For developers who love building
applications in Visual Studio today, there is
no reason to switch IDEs. There are a few
ways that Visual Studio 2017 or later can be
used to develop with Angular.

First, Visual Studio can create a new ASP.
NET Core Web Application and select the
API template. This will create a project with
WebAPI controllers and an Angular front-end.

Second, developers can install and use
the Node Package Manager (npm) and
the Angular CLI to create a new Angular
application. After the application has been
created, Visual Studio can open the folder
containing the Angular app. Visual Studio
2017 and later can open a folder instead of
a project or solution file.

VS Code has extensions for nearly every
development language and framework. It
also recently introduced Extension Packs,
which are bundles of related extensions.
Install an Extension Pack for your
framework of choice to get up and running
quickly. We recommend the Angular
Essentials pack by John Papa, which includes
extensions for Angular Language Service

WinForms WPF JavaScript

IDE/Editor Visual Studio Visual Studio Visual Studio / VS Code

Language C# or VB C# or VB TypeScript

Framework(s) .NET Framework .NET Framework JS Frameworks

Package Manager NuGet NuGet npm

Controller Logic Components or Controllers ViewModels Components

Styling Property based styling XAML Styles CSS

Data Access SQL or Web Services SQL or Web Services Web Services (XML, JSON)

9Desktop to Web:
Migrating from WinForms to JavaScript

https://cli.angular.io/
https://cli.angular.io/
https://marketplace.visualstudio.com/items?itemName=johnpapa.angular-essentials
https://marketplace.visualstudio.com/items?itemName=johnpapa.angular-essentials

and Angular Snippets, TSLint (a TypeScript
linter), and Angular console, Angular inline
templates and stylesheets, and much more.

Web applications can use a number of
different JavaScript frameworks. While
Angular is the primary framework, another
installed by default when creating a new
application with the Angular CLI is Jasmine
for unit testing your components.

.NET Framework developers are probably
familiar with the NuGet package
management system. The package
management system used by most web
developers today is Node’s npm. After
installing npm, packages can be installed at
the command line with a simple command
like:

npm install <package-name>

By default, packages are installed locally
to each project, but you can also install a
package globally.

Angular applications use CSS familiar to all
web development by default when creating
a new application, but other options,
including LESS and SASS, can also be used.
CSS3 is a rich, powerful styling system that
can apply style to any HTML element and
supports inheritance and multiple methods
of linking styles to visuals. When used in
Angular, styles can be applied from the CSS
file for the current component or inherited
from a parent component, module, or
application-wide style.

Data Access in Web Applications
Desktop developers build apps in an
environment where the entire workstation
and network are available when reading
data. When running on the client-side within
a web browser, there are fewer options for
data access.

We recommend building web services to
return data formatted as XML or JSON.
Visual Studio developers will feel the most
comfortable building ASP.NET WebAPI
projects for this purpose.

In Angular, web service calls will be wrapped
in functions inside “Service” classes. These
Service classes can then be used across
components in the library.

NgRx (Reactive State for Angular) is a
powerful library used commonly inside
Angular service classes. .NET Framework
developers who have used Microsoft
Reactive Extensions will find that NgRx
concepts feel familiar.

Already have web services that return XML
or JSON to your desktop application? There
is a good chance you can re-use those in
your Angular application.

10 Desktop to Web:
Migrating from WinForms to JavaScript

https://jasmine.github.io/
https://jasmine.github.io/
https://www.npmjs.com/
https://www.npmjs.com/
https://ngrx.io/

While Visual Studio is the primary
tool for Windows desktop developers,
Microsoft released a new lightweight
editor called Visual Studio Code (VS
Code) in 2015. Thanks to the speed,
flexibility, and extensibility of VS Code,

it has become the editor of choice for
many modern web developers on every
platform (VS Code runs on Windows,
Mac and Linux). Here is a new Angular
project in VS Code on a Mac.

Starting the Migration Process
Because the scope of moving an enterprise
application from the desktop to the web is
non-trivial, often spanning an organization’s
release cycles or even fiscal years, it is best
to plan a phased migration. Migrating each
layer of the application in separate phases
is a good logical separation of work.

By starting with the data layer, moving
next to the controller (business logic)
layer, and finally finishing with the UI layer,
developers can minimize the pain of a large

scale migration. If the desktop application
has these existing logical layers, it can be
updated to leverage the migrated layer as
each phase of the migration completes.

The layers that will be executing on the
servers, in this case the data and services,
are referred to as the back end of the
application by web developers. The UI layer
and its controllers are known as the front
end.

11Desktop to Web:
Migrating from WinForms to JavaScript

https://code.visualstudio.com/
https://code.visualstudio.com/

Angular Libraries, Modules,
and Components

book
Angular breaks applications down into libraries, modules, and components.
Think of a library as a .NET assembly or DLL. Angular libraries can be
versioned and shared among multiple Angular applications, containing one
or more modules and components.

object-group
An Angular module is a grouping of related components in the application.

cog
A component may correspond to a screen in the web application, which in
turn will be composed of components for each of the composite controls
on the screen. WPF developers can think of Angular components as similar
to View Models and Angular modules as user controls grouping multiple,
interconnected View Models.

Each Angular visual component consists of an HTML file, a TypeScript file,
and a CSS file. The HTML contains definitions of the visual elements, the
TypeScript contains the logic, and the CSS contains the style to be applied to
the HTML elements.

12 Desktop to Web:
Migrating from WinForms to JavaScript

Migrating the Data Layer
In most migrations, the data layer migration
will require the least amount of change
to support a web app. The data layer for
Windows desktop applications in many
enterprise environments is usually a SQL
Server database, possibly with a large
collection of stored procedures.

The good news is you can
keep your database.

If the database is running in a local
data center, you can leave it untouched
(provided the web services will be running
on a server with access to the database).
You might take the opportunity to migrate
to a cloud provider like Microsoft Azure.

This decision is something that should be
evaluated during migration planning.

Instead of querying data directly from the
desktop application, the web services in the
back end (controllers) will be querying the
data and returning it to the UI. Let’s take a
look at the difference.

If the desktop application already uses
web services for all data access, this will
streamline the migration as this first step is
already complete!

If the desktop application queries data
directly from the client workstation, but has
a good separation of the business logic and
data access layers, much of this data access
code can be ported or re-used directly on
the back end.

Migrating the Controller (Business Logic) Layer

The controller layer is where the real
work in the application takes place. This is
where the business logic is typically hosted.
Desktop developers typically create their
business logic modules in C# or Visual Basic.

When migrating to the web with Angular,
these could be migrated to TypeScript
components. An alternative approach would
be to keep the .NET code running on the
server instead of rewriting in TypeScript.
This would keep the code closer to the data

layer and potentially incur less work.

There are several strategies for migrating
desktop business logic to TypeScript,
depending on the existing design and the
availability of documentation and tests.

If the layer is well designed using the SOLID
principles, you can follow some of these
guidelines for translating .NET Framework
concepts of logical separation to TypeScript.

13Desktop to Web:
Migrating from WinForms to JavaScript

https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID

• When translating .NET assemblies to TypeScript libraries, these
libraries can be packaged and shared across applications, like
assemblies. They can also be shared publicly as npm packages,
similar to NuGet packages.

• .NET namespaces can be translated to TypeScript modules
or namespaces. Modules in TypeScript are logical groupings
of components that share state and are available externally.
Namespaces are modules that are only available internally.

• .NET classes can be translated into TypeScript classes. There can
typically be a 1-to-1 translation here, barring any refactoring.

• .NET interfaces relate directly to TypeScript interfaces. TypeScript
supports the concept of interfaces, and they are used commonly
in Angular applications.

If the existing controllers have unit tests,
these should be migrated to JavaScript unit
tests with the corresponding class under
test using the Jasmine test framework.
Tests can execute via npm directly or while
building the application.

When actually creating the TypeScript code,
it is possible to convert some simple C#
classes. There is a Visual Studio extension
called TypeScriptSyntaxPaste that is a time-
saver when migrating some simple business
logic, DTO classes, and interfaces.

Data Access

Direct

Web Services

Client Application

Client Side Server Side

Web Services

Database

14 Desktop to Web:
Migrating from WinForms to JavaScript

https://marketplace.visualstudio.com/items?itemName=NhaBuiDuc.TypescriptSyntaxPaste
https://marketplace.visualstudio.com/items?itemName=NhaBuiDuc.TypescriptSyntaxPaste

Migrating the UI Layer
Desktop application developers who build
UI components are accustomed to having a
visual designer available in Visual Studio to
lay out the UI. WinForms and WPF have
robust designers in Visual Studio. JavaScript
UI frameworks do not have the benefit
of visual designers to rapidly lay out and
visualize the UI when working in VS Code.
However, there are a few options for visually
designing components.

Your .NET UI components and controls
will be replaced with Angular components.
Many of these will be created with simple
HTML controls such as buttons, checkboxes,
inputs, and datepickers. Controls can also
come from third-party libraries like Wijmo.
These controls, like .NET controls, save you
the time of writing them from scratch.

To create a modern-looking, consistent UI
design, Angular applications can leverage a
UI library like Bootstrap or Material to style
the UI components. Most native HTML and
third-party components are supported by
these styling libraries to provide a strong
foundation of UI design on which to build.
Both Bootstrap and Material support
theming to easily apply company branding
to the application.

CI is the practice of multiple developers
contributing to a source code repository for
an application and merging their changes
into a single master branch or repository.

These merged changes are compiled, and
automated test suites are run against them
to validate the changes.

 Build and Deploy

One of the benefits of moving to the web is
the relative ease of deploying releases.
Desktop applications must be deployed
across many client workstations. Web
applications are deployed either to a web
server. This ease of deployment has led
to the rise of Continuous Integration/
Continuous Delivery (CI/CD) and modern
DevOps practices.

Design
Resources

Here are three top design resources for your
JavaScript conversion project.

• Storybook creates individual UI
components for Angular, React, or Vue-
based applications in the browser. It is
open-source with several add-ons and
tutorials available.

• Wijmo Designer for VS Code is available
to visually create Wijmo components for
Angular.

• Sketch is a popular application for
designing web UI components. It is not a

free tool, but it is powerful and widely used.

15Desktop to Web:
Migrating from WinForms to JavaScript

https://www.grapecity.com/wijmo/
https://www.grapecity.com/wijmo/
https://getbootstrap.com/
https://getbootstrap.com/
https://material.angular.io/
https://material.angular.io/
https://storybook.js.org/
https://marketplace.visualstudio.com/items?itemName=GrapeCityinc.gc-wijmo-designer
https://www.grapecity.com/wijmo/
https://www.grapecity.com/wijmo/
https://www.sketch.com/

CD is the practice of frequently releasing
and deploying the application. This is
usually a staged deployment (Dev, Test,
Production) to allow manual and automated
test suites to be executed before deploying
to production.

When using a cloud service like Azure
DevOps Services for CI/CD, these steps for
integration, build, test, and deployment
can be automated and orchestrated in a
way that would be much more challenging
with desktop application build-and-deploy
processes.

Cloud service providers like Azure or AWS
can also make it easier to automatically
scale different layers of the application as
needed. The UI, web services and database
can each be scaled up or out to keep the

application performing smoothly during
times of peak demand.

Another method of designing services
for scale is by creating microservices.
Microservice architecture is achieved by
separating each service into its own self-
contained component that can be deployed
and scaled independently. Removing
external dependencies and their stateless
nature are the keys to this independence.

Traditional Development vs. CI/CD Methodology

16 Desktop to Web:
Migrating from WinForms to JavaScript

https://dev.azure.com/
https://dev.azure.com/
https://dev.azure.com/

The Future
It is well known that no technology lives forever, especially web development technologies.
So, what does the future hold for web developers? Will migration to the web become easier?

WebAssembly

WebAssembly
(or Wasm)
is native
compiled
code that
runs in
modern web
browsers.

Wasm 1.0 is now available and runs on all
of the major desktop browsers including
Chrome, Firefox, Edge, and Safari. That
means that languages like C++, Rust, and

Java can be compiled to download and run
inside the browser on the client machine.
Even .NET Framework languages can be run
in the browser with Wasm and Blazor.

This will mean that developers can continue
to write web application code in the
programming language they know best. As
Wasm matures, it seems likely that these
applications will out-perform scripted
languages like JavaScript and TypeScript
while maintaining the security and safety of
sandboxed web apps in the browser.

Blazor

Blazor is
Microsoft’s
framework for
building .NET
UI components
in Wasm. This
means that all
server-side and

client-side application code can be written
in C# rather than JavaScript.

Does this mean that you can take all of
your desktop .NET Framework components
and re-compile them targeting Blazor?
Unfortunately, no. Blazor is part of ASP.NET
Core 3.0, so all Blazor components must
target .NET Core 3.0. This also means that
Blazor components are not quite ready for
production applications as .NET Core 3.0 is
still in beta and is targeted for a late 2019
release. However, the migration from .NET
Framework to .NET Core will be less painful
than a move to a JavaScript framework.

17Desktop to Web:
Migrating from WinForms to JavaScript

https://webassembly.org/
https://docs.microsoft.com/en-us/aspnet/core/blazor/?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/blazor/?view=aspnetcore-3.0

Wrapping Up
As you’ve seen in this guide, building new applications or migrating enterprise
applications to use web technologies is the future. The technology available is diverse
and mature, and your ability to quickly develop and deploy fixes, new features, and
entire apps is becomes much more streamlined.

Hopefully this guide gave you an overview the best approach to migrating your
development process from WPF and WinForms apps to modern web technologies.

Our recommendation as to the best path today is to take a close look
at Angular and TypeScript.

While technologies like WebAssembly and Blazor may open up new
opportunities to re-use C# code down the road, they are still
immature. Starting to adopt technologies like Angular, TypeScript,
and JavaScript today will open a world of opportunity.

18 Desktop to Web:
Migrating from WinForms to JavaScript

The transition from desktop to web applications can be
overwhelming, especially if you’re new to the modern
JavaScript ecosystem. With a multi-faceted approach
to addressing developer-specific needs, our offerings
continue to expand and address the needs of the .NET,
JavaScript mobile, and web developer.

If you are considering this migration, you can future-
proof your apps with cross-platform UI controls.

Our ComponentOne.NET offerings continue to grow and
address the needs of .NET, mobile, and web developers.
GrapeCity also offers Wijmo, a suite of 60+ JavaScript
UI controls with all ComponentOne subscriptions. We
offer these tools as a package, along with a mixture of
resources written by developers to help layout the best
framework and tools to simplify the migration process.

TRY WIJMO TODAY

19Desktop to Web:
Migrating from WinForms to JavaScript

https://www.grapecity.com/componentone?utm_source=whitepaper&utm_medium=clicktosite&utm_campaign=migration-whitepaper
https://www.grapecity.com/wijmo?utm_source=whitepaper&utm_medium=clicktosite&utm_campaign=migration-whitepaper
https://www.grapecity.com/wijmo?utm_source=whitepaper&utm_medium=clicktosite&utm_campaign=migration-whitepaper
https://www.grapecity.com/wijmo?utm_source=whitepaper&utm_medium=clicktosite&utm_campaign=migration-whitepaper
https://www.grapecity.com/wijmo?utm_source=whitepaper&utm_medium=clicktosite&utm_campaign=migration-whitepaper

All rights Reserved. © 2019
www.grapecity.com

http://www.grapecity.com

	_q5t80smdhbbj
	_y863bqjmp8pl
	_rf8rgjmir4vg
	_680mbafz7zpa
	_7crownl0flba
	_mqbnqrug19p3
	_108110aehwxq
	_pzaslnd604xa
	_hcyxwl51u8nc
	_ojuy50jmptlv
	_meqlupyyexgj
	_uwpsrv1yvd0i
	_s87y3xbfu6iv
	_4er6t7d5vfvn
	_1nrbnlwlugy
	Migrating from WinForms to JavaScript
	Desktop Enterprise Applications
	Shifting to the Web
	Understanding The Web Ecosystem
	Our Recommendation: Angular and TypeScript
	The Angular/TypeScript Toolchain
	Data Access in Web Applications
	Starting the Migration Process
	Angular Libraries, Modules, and Components
	Build and Deploy
	The Future
	Wrapping Up

